1
|
Liu XF, Sun YB, Zhu GF, Huang LL, Yu B. Complete chloroplast genomes and comparative analyses of Hippeastrum ‘milady’, Hippeastrum albertii and Hippeastrum reticulatum (Amaryllidaceae). PLoS One 2022; 17:e0271335. [PMID: 35930553 PMCID: PMC9355175 DOI: 10.1371/journal.pone.0271335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Hippeastrum is a genus of ornamental plants with large, brightly colored flowers. Due to the very high seed-setting rate of the hybridization of Hippeastrum, the large population of hybrid progeny and the existence of superparent inheritance, it is difficult to trace the origin of the varieties collected from the market during breeding. In this study, we analyzed the chloroplast genomes of Hippeastrum ‘Milady’, H. alberti, and H. reticulatum using the Illumina NovaSeq sequencing platform and generated full-length sequences of 158,067, 158,067, and 158,522 bp, respectively. All three genomes had the typical tetrad structure. The large single copy, small single copy, and inverted repeat regions of H. reticulatum were observed to be respectively 277, 138, and 20 bp longer than the corresponding regions of H. ‘Milady’ and H. alberti. The results of comparative analysis of simple sequence repeats (SSRs), Ka/Ks ratios, codon preferences, and complete sequences of chloroplasts of these three taxa and 14 other plant species were as follows. First, the chloroplast genomes of H. ‘Milady’, H. alberti, and H. reticulatum contain 209, 209, and 211 SSR sites, respectively, most of which (123, 123, and 122, respectively) are single nucleotide repeats. Second, leucine, arginine, and serine are the most frequently used amino acids in the three chloroplast genomes. Third, H. ‘Milady’, H. alberti, and H. reticulatum are more closely related to Lycoris and Narcissus than to Allium and Agapanthus. Our results will provide information on the study of origins or relatedness of native species, and the identification of cultivars.
Collapse
Affiliation(s)
- Xiao-fei Liu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Ying-bo Sun
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Gen-fa Zhu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Li-li Huang
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Bo Yu
- Environmental Horticulture Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
- * E-mail:
| |
Collapse
|
2
|
Zhang SY, Hu YF, Wang HT, Zhang PC, Shao JW. Over 30 Years of Misidentification: A New Nothospecies Lycoris × jinzheniae (Amaryllidaceae) in Eastern China, Based on Molecular, Morphological, and Karyotypic Evidence. PLANTS (BASEL, SWITZERLAND) 2022; 11:1730. [PMID: 35807681 PMCID: PMC9269102 DOI: 10.3390/plants11131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Based on the complete chloroplast genome, morphology, and karyotype evidence, we identified a new nothospecies, Lycoris × jinzheniae S.Y. Zhang, P.C. Zhang & J.W. Shao, in eastern China. This new nothospecies has been inappropriately named Lycoris × albiflora in the previous literature for more than 30 years. However, the new nothospecies resulted from the hybridization of L. sprengeri and L. chinensis and had the following characteristics: the karyotype was 2n = 19 = 3V + 16I, the leaves emerged in the spring, the ratio of filament to corolla length was approximately 1.2, tepals were slightly undulated and curved, and it was distributed throughout eastern China. These characteristics are quite different from those of L. × albiflora; thus, in this study, we named it and provided a detailed morphological description and diagnosis.
Collapse
Affiliation(s)
- Si-Yu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
| | - Ying-Feng Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
| | - Hao-Tian Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
| | | | - Jian-Wen Shao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.-Y.Z.); (Y.-F.H.); (H.-T.W.)
- The Key Laboratory of Conservation and Employment of Biological Resources of Anhui, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Characterization of the complete chloroplast genome of Zephyranthes phycelloides ( Amaryllidaceae, tribe Hippeastreae) from Atacama region of Chile. Saudi J Biol Sci 2022; 29:650-659. [PMID: 35002462 PMCID: PMC8716934 DOI: 10.1016/j.sjbs.2021.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Sporadic rains in the Atacama Desert reveal a high biodiversity of plant species that only occur there. One of these rare species is the “Red añañuca” (Zephyranthes phycelloides), formerly known as Rhodophiala phycelloides. Many species of Zephyranthes in the Atacama Desert are dangerously threatened, due to massive extraction of bulbs and cutting of flowers. Therefore, studies of the biodiversity of these endemic species, which are essential for their conservation, should be conducted sooner rather than later. There are some chloroplast genomes available for Amaryllidaceae species, however there is no complete chloroplast genome available for any of the species of Zephyranthes subgenus Myostemma. The aim of the present work was to characterize and analyze the chloroplast of Z. phycelloides by NGS sequencing. The chloroplast genome of the Z. phycelloides consists of 158,107 bp, with typical quadripartite structures: a large single copy (LSC, 86,129 bp), a small single copy (SSC, 18,352 bp), and two inverted repeats (IR, 26,813 bp). One hundred thirty-seven genes were identified: 87 coding genes, 8 rRNA, 38 tRNA and 4 pseudogenes. The number of SSRs was 64 in Z. phycelloides and a total of 43 repeats were detected. The phylogenetic analysis of Z. phycelloides shows a distinct subclade with respect to Z. mesochloa. The average nucleotide variability (Pi) between Z. phycelloides and Z. mesochloa was of 0.02000, and seven loci with high variability were identified: psbA, trnSGCU-trnGUCC, trnDGUC-trnYGUA, trnLUAA-trnFGAA, rbcL, psbE-petL and ndhG-ndhI. The differences between the species are furthermore confirmed by the high amount of SNPs between these two species. Here, we report for the first time the complete cp genome of one species of the Zephyranthes subgenus Myostemma, which can be used for phylogenetic and population genomic studies.
Collapse
|
4
|
Comparative Chloroplast Genomes of Four Lycoris Species (Amaryllidaceae) Provides New Insight into Interspecific Relationship and Phylogeny. BIOLOGY 2021; 10:biology10080715. [PMID: 34439948 PMCID: PMC8389210 DOI: 10.3390/biology10080715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
The genus Lycoris (Amaryllidaceae) consists of about 20 species, which is endemic to East Asia. Although the Lycoris species is of great horticultural and medical importance, challenges in accurate species identification persist due to frequent natural hybridization and large-scale intraspecific variation. In this study, we sequenced chloroplast genomes of four Lycoris species and retrieved seven published chloroplast (cp) genome sequences in this genus for comparative genomic and phylogenetic analyses. The cp genomes of these four newly sequenced species were found to be 158,405-158,498 bp with the same GC content of 37.8%. The structure of the genomes exhibited the typical quadripartite structure with conserved gene order and content. A total of 113 genes (20 duplicated) were identified, including 79 protein-coding genes (PCGs), 30 tRNAs, and 4 rRNAs. Phylogenetic analysis showed that the 11 species were clustered into three main groups, and L. sprengeri locate at the base of Lycoriss. The L. radiata was suggested to be the female donor of the L. incarnata, L. shaanxiensis, and L. squamigera. The L. straminea and L. houdyshelii may be derived from L. anhuiensis, L. chinensis, or L. longituba. These results could not only offer a genome-scale platform for identification and utilization of Lycoris but also provide a phylogenomic framework for future studies in this genus.
Collapse
|
5
|
Zhang F, Wang T, Shu X, Wang N, Zhuang W, Wang Z. Complete Chloroplast Genomes and Comparative Analyses of L. chinensis, L. anhuiensis, and L. aurea (Amaryllidaceae). Int J Mol Sci 2020; 21:E5729. [PMID: 32785156 PMCID: PMC7461117 DOI: 10.3390/ijms21165729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
The genus Lycoris (about 20 species) includes important medicinal and ornamental plants. Due to the similar morphological features and insufficient genomic resources, germplasm identification and molecular phylogeny analysis are very limited. Here, we sequenced the complete chloroplast genomes of L. chinensis, L. anhuiensis, and L. aurea; they have very similar morphological traits that make it difficult to identify. The full length of their cp genomes was nearly 158k bp with the same guanine-cytosine content of 37.8%. A total of 137 genes were annotated, including 87 protein-coding genes, 42 tRNAs, and eight rRNAs. A comparative analysis revealed the conservation in sequence size, GC content, and gene content. Some variations were observed in repeat structures, gene expansion on the IR-SC (Inverted Repeat-Single-Copy) boundary regions. Together with the cpSSR (chloroplast simple sequence repeats), these genetic variations are useful to develop molecular markers for germplasm identification. Phylogenetic analysis showed that seven Lycoris species were clustered into a monophyletic group, and closed to Narcissus in Amaryllidaceae. L. chinensis, L. anhuiensis, and L. longituba were clustered together, suggesting that they were very likely to be derived from one species, and had the same ancestor with L. squamigera. Our results provided information on the study of genetic diversity, origins or relatedness of native species, and the identification of cultivars.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (X.S.); (N.W.); (W.Z.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (X.S.); (N.W.); (W.Z.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (X.S.); (N.W.); (W.Z.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (X.S.); (N.W.); (W.Z.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (X.S.); (N.W.); (W.Z.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (X.S.); (N.W.); (W.Z.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
6
|
Li P, Ren M, Zhu Q, Zhang Y, Xu H, Wang Z, Liu S, Cheng Q, Liang B. The complete chloroplast genome of Hippeastrum vittatum (Amaryllidaceae). Mitochondrial DNA B Resour 2020; 5:3521-3523. [PMID: 33458226 PMCID: PMC7781927 DOI: 10.1080/23802359.2020.1827059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Peiling Li
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Maofei Ren
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Qingsong Zhu
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Yan Zhang
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Hanbing Xu
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhiyong Wang
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Songhu Liu
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Qin Cheng
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Benguo Liang
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, China
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
7
|
Peng Y, Wei J, Yang L. The complete chloroplast genome of Lycoris aurea (L'Hér.) Herb. Mitochondrial DNA B Resour 2020; 5:788-789. [PMID: 33366751 PMCID: PMC7748574 DOI: 10.1080/23802359.2020.1715296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022] Open
Abstract
Lycoris aurea (L'Hér.) Herb is a herb widely growing in Chinese southen region, such as Guangxi, Guangdong, Fujian , Yunnan and Sichuan provinces. It not only has medicinal value, but also can be used as ornamental garden plant. The circular chloroplast genome of L. aurea was 158,690 bp in size, consisting of a pair of inverted repeat (IR) regions (26,782 bp) separated by a large single-copy (LSC) region (85,467 bp) and a small single-copy (SSC) region (18,541 bp) regions. And, it contained 127 genes, including 38 tRNA genes, 8 rRNA genes and 81 mRNA genes. The overall GC content of L. aurea is 37.73%. Phylogenetic analysis strongly supported that L. aurea and its congeneric species, L. radiata and L. squamigera, as sister group with 100% bootstrap value.
Collapse
Affiliation(s)
- Ye Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Jing Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Limei Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|