1
|
Arifin DR, Bulte JWM. In Vivo Imaging of Naked and Microencapsulated Islet Cell Transplantation. Methods Mol Biol 2023; 2592:75-88. [PMID: 36507986 PMCID: PMC10437091 DOI: 10.1007/978-1-0716-2807-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe step-by-step methods to label human pancreatic islet cells and murine insulinoma cells and their subsequent transplantation into type I diabetic mouse models with a focus on in vivo imaging using clinically applicable scanners. We also cover islets that are microencapsulated within alginate hydrogels loaded with imaging agents. By following these methods, it is possible to image cell grafts using T1-weighted and T2/T2*-weighted 1H magnetic resonance imaging (MRI), 19F MRI, computed tomography, ultrasound imaging, and bioluminescence imaging in vivo. Considering a myriad of factors that may affect the outcome of proper in vivo detection, we discuss potential issues that may be encountered during and after the process of labeling. The ultimate goal is to use these in vivo imaging approaches to determine and optimize naked and encapsulated islet cell survival, therapeutic function, and engraftment procedures.
Collapse
Affiliation(s)
- Dian R Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhang Y, Gallego I, Plou J, Pedraz JL, Liz-Marzán LM, Ciriza J, García I. SERS monitoring of local pH in encapsulated therapeutic cells. NANOSCALE 2021; 13:14354-14362. [PMID: 34477718 DOI: 10.1039/d1nr03969e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microencapsulation of therapeutic cells has widely advanced toward the development of treatments for various diseases, in particular seeking the protection of cell transplants from immune rejection. However, several challenges in cell therapy remain due to the lack of suitable methods to monitor in vivo microcapsule tracking, microcapsule stability and/or altered cell viability and proliferation upon transplantation. We propose in this work the incorporation of contrast agents in microcapsules, which can be easily visualized by SERS imaging. By placing SERS probes in the alginate extracellular layer, a high contrast can be obtained with negligible toxicity. Specifically, we used a pH-sensitive SERS tracking probe consisting of gold nanostars encoded with a pH-sensitive Raman-active molecule, and protected by a layer of biocompatible polymer coating, grafted on the nanoparticles via electrostatic interactions. This nanomaterial is highly sensitive within the biologically relevant pH range, 5.5-7.8. We demonstrate that this SERS-based pH sensor can provide information about cell death of microencapsulated cells, in a non-invasive manner. As a result, we expect that this approach should provide a general strategy to study biological interactions at the microcapsule level.
Collapse
Affiliation(s)
- Yizhi Zhang
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Memon B, Abdelalim EM. Stem Cell Therapy for Diabetes: Beta Cells versus Pancreatic Progenitors. Cells 2020; 9:cells9020283. [PMID: 31979403 PMCID: PMC7072676 DOI: 10.3390/cells9020283] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders. In order to replace the function of the destroyed pancreatic beta cells in diabetes, islet transplantation is the most widely practiced treatment. However, it has several limitations. As an alternative approach, human pluripotent stem cells (hPSCs) can provide an unlimited source of pancreatic cells that have the ability to secrete insulin in response to a high blood glucose level. However, the determination of the appropriate pancreatic lineage candidate for the purpose of cell therapy for the treatment of diabetes is still debated. While hPSC-derived beta cells are perceived as the ultimate candidate, their efficiency needs further improvement in order to obtain a sufficient number of glucose responsive beta cells for transplantation therapy. On the other hand, hPSC-derived pancreatic progenitors can be efficiently generated in vitro and can further mature into glucose responsive beta cells in vivo after transplantation. Herein, we discuss the advantages and predicted challenges associated with the use of each of the two pancreatic lineage products for diabetes cell therapy. Furthermore, we address the co-generation of functionally relevant islet cell subpopulations and structural properties contributing to the glucose responsiveness of beta cells, as well as the available encapsulation technology for these cells.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, P.O。 Box 34110 Doha, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, P.O。 Box 34110 Doha, Qatar;
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar
- Correspondence: ; Tel.: +97-44-4546-432; Fax: +97-44-4541-770
| |
Collapse
|
4
|
Santos-Vizcaino E, Haley H, Gonzalez-Pujana A, Orive G, Maria Hernandez R, Luker GD, Pedraz JL. Monitoring implantable immunoisolation devices with intrinsic fluorescence of genipin. JOURNAL OF BIOPHOTONICS 2019; 12:e201800170. [PMID: 30058289 PMCID: PMC6351221 DOI: 10.1002/jbio.201800170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Imaging of implanted hydrogel-based biosystems usually requires indirect labeling of the vehicle or cargo, adding complexity and potential risk of altering functionality. Here, for the first time, it is reported that incorporation of genipin into the design of immunoisolation devices can be harnessed for in vivo imaging. Using cell-compatible in situ cross-linking reactions, a fast, efficient and noncytotoxic procedure is shown to maximize fluorescence of microcapsules. Moreover, genipin is validated as a quantitative imaging probe by injecting increasing doses of microcapsules in the subcutaneous space of mice, obtaining strong, stable fluorescence with good linearity of signal to microcapsule dose over several weeks. This allows immediate assessment of the actual injected dose and monitoring of its position over time, thereby significantly enhancing the efficacy and biosafety of the therapy. These outcomes may facilitate clinical translation and optimize medical applications of multiple hydrogel-based biotechnologies.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, 01006, Spain.; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, 01006, Spain
| | - Henry Haley
- Department of Radiology, Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, 01006, Spain.; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, 01006, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, 01006, Spain.; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, 01006, Spain.; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, 01006, Spain
| | | | | |
Collapse
|
5
|
Mair LO, Chowdhury S, Paredes-Juarez GA, Guix M, Bi C, Johnson B, English BW, Jafari S, Baker-McKee J, Watson-Daniels J, Hale O, Stepanov P, Sun D, Baker Z, Ropp C, Raval SB, Arifin DR, Bulte JWM, Weinberg IN, Evans EE, Cappelleri DJ. Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. MICROMACHINES 2019; 10:E230. [PMID: 30935105 PMCID: PMC6523834 DOI: 10.3390/mi10040230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Soft, untethered microrobots composed of biocompatible materials for completing micromanipulation and drug delivery tasks in lab-on-a-chip and medical scenarios are currently being developed. Alginate holds significant potential in medical microrobotics due to its biocompatibility, biodegradability, and drug encapsulation capabilities. Here, we describe the synthesis of MANiACs-Magnetically Aligned Nanorods in Alginate Capsules-for use as untethered microrobotic surface tumblers, demonstrating magnetically guided lateral tumbling via rotating magnetic fields. MANiAC translation is demonstrated on tissue surfaces as well as inclined slopes. These alginate microrobots are capable of manipulating objects over millimeter-scale distances. Finally, we demonstrate payload release capabilities of MANiACs during translational tumbling motion.
Collapse
Affiliation(s)
- Lamar O Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | - Sagar Chowdhury
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Genaro A Paredes-Juarez
- Russel H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Maria Guix
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Chenghao Bi
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Benjamin Johnson
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Sahar Jafari
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | | | | | - Olivia Hale
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | - Pavel Stepanov
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | - Danica Sun
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | - Zachary Baker
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | - Chad Ropp
- Weinberg Medical Physics, Inc., North Bethesda, MD 20852, USA.
| | | | - Dian R Arifin
- Russel H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jeff W M Bulte
- Russel H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Engineering, Baltimore, MD 21218, USA.
| | | | - Emily E Evans
- Department of Physics, Elon University, Elon, NC 27244, USA.
| | - David J Cappelleri
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|