1
|
Won EJ, Lee M, Lee EK, Baek SH, Yoon TJ. Lipid-Based Nanoparticles Fused with Natural Killer Cell Plasma Membrane Proteins for Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1142. [PMID: 39339179 PMCID: PMC11434974 DOI: 10.3390/pharmaceutics16091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Immunotherapy combined with chemicals and genetic engineering tools is emerging as a promising strategy to treat triple-negative breast cancer (TNBC), which is more aggressive with poorer progress than other breast cancer subtypes. In this study, lipid-based nanoparticles (LNPs) possessed an NK cell-like function that could deliver tumor-specific therapeutics and inhibit tumor growth. LNPs fused with an NK cell membrane protein system (NK-LNP) have three main features: (i) hydrophilic plasmid DNA can inhibit TNBC metastasis when encapsulated within LNPs and delivered to cells; (ii) the lipid composition of LNPs, including C18 ceramide, exhibits anticancer effects; (iii) NK cell membrane proteins are immobilized on the LNP surface, enabling targeted delivery to TNBC cells. These particles facilitate the targeted delivery of HIC1 plasmid DNA and the modulation of immune cell functions. Delivered therapeutic genes can inhibit metastasis of TNBC and then induce apoptotic cell death while targeting macrophages to promote cytokine release. The anticancer effect is expected to be applied in treating various difficult-to-treat cancers with LNP fused with NK cell plasma membrane proteins, which can simultaneously deliver therapeutic chemicals and genes.
Collapse
Affiliation(s)
- Eun-Jeong Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Cheongju 28116, Republic of Korea
| | - Myungchul Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 31065, Republic of Korea
| | - Eui-Kyung Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 31065, Republic of Korea
| | - Seung-Hoon Baek
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Tae-Jong Yoon
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea
| |
Collapse
|
2
|
Demirsoy S, Tran H, Liu J, Li Y, Yang S, Aregawi D, Glantz MJ, Jacob NK, Walter V, Schell TD, Olmez I. Targeting Tyro3, Axl, and MerTK Receptor Tyrosine Kinases Significantly Sensitizes Triple-Negative Breast Cancer to CDK4/6 Inhibition. Cancers (Basel) 2024; 16:2253. [PMID: 38927958 PMCID: PMC11202171 DOI: 10.3390/cancers16122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastasis and mortality rates. Given the lack of actionable targets such as ER and HER2, TNBC still remains an unmet therapeutic challenge. Despite harboring high CDK4/6 expression levels, the efficacy of CDK4/6 inhibition in TNBC has been limited due to the emergence of resistance. The resistance to CDK4/6 inhibition is mainly mediated by RB1 inactivation. Since our aim is to overcome resistance to CDK4/6 inhibition, in this study, we primarily used the cell lines that do not express RB1. Following a screening for activated receptor tyrosine kinases (RTKs) upon CDK4/6 inhibition, we identified the TAM (Tyro3, Axl, and MerTK) RTKs as a crucial therapeutic vulnerability in TNBC. We show that targeting the TAM receptors with a novel inhibitor, sitravatinib, significantly sensitizes TNBC to CDK4/6 inhibitors. Upon prolonged HER2 inhibitor treatment, HER2+ breast cancers suppress HER2 expression, physiologically transforming into TNBC-like cells. We further show that the combined treatment is highly effective against drug-resistant HER2+ breast cancer as well. Following quantitative proteomics and RNA-seq data analysis, we extended our study into the immunophenotyping of TNBC. Given the roles of the TAM receptors in promoting the creation of an immunosuppressive tumor microenvironment (TME), we further demonstrate that the combination of CDK4/6 inhibitor abemaciclib and sitravatinib modifies the immune landscape of TNBC to favor immune checkpoint blockade. Overall, our study offers a novel and highly effective combination therapy against TNBC and potentially treatment-resistant HER2+ breast cancer that can be rapidly moved to the clinic.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | - Ha Tran
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Joseph Liu
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA
| | - Yunzhan Li
- Departments of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA
| | - Shengyu Yang
- Departments of Cellular and Molecular Physiology, Penn State University, Hershey, PA 17033, USA
| | - Dawit Aregawi
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | - Michael J. Glantz
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| | | | - Vonn Walter
- Departments of Public Health Sciences, Penn State University, Hershey, PA 17033, USA
| | - Todd D. Schell
- Departments of Microbiology and Immunology, Penn State University, Hershey, PA 17033, USA
| | - Inan Olmez
- Departments of Neurosurgery, Penn State University, Hershey, PA 17033, USA (M.J.G.)
| |
Collapse
|
3
|
Keshavarz S, Wall JR, Keshavarz S, Vojoudi E, Jafari-Shakib R. Breast cancer immunotherapy: a comprehensive review. Clin Exp Med 2023; 23:4431-4447. [PMID: 37658246 DOI: 10.1007/s10238-023-01177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Cancer remains a major health problem despite numerous new medical interventions that have been introduced in recent years. One of the major choices for cancer therapy is so-called adoptive cell therapy (ACT). ACT can be performed using both innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and γδ T cells and acquired immune T cells. It has become possible to utilize these cells in both their native and modified states in clinical studies. Because of considerable success in cancer treatment, ACT now plays a role in advanced therapy protocols. Genetic engineering of autologous and allogeneic immune cells (T lymphocytes, NK cells, macrophages, etc.) with chimeric antigen receptors (CAR) is a powerful new tool to target specific antigens on cancer cells. The Food and Drug Administration (FDA) in the US has approved certain CAR-T cells for hematologic malignancies and it is hoped that their use can be extended to incorporate a variety of cells, in particular NK cells. However, the ACT method has some limitations, such as the risk of rejection in allogeneic engrafts. Accordingly, numerous efforts are being made to eliminate or minimize this and other complications. In the present review, we have developed a guide to breast cancer (BC) therapy from conventional therapy, through to cell-based approaches, in particular novel technologies including CAR with emphasis on NK cells as a new and safer candidate in this field as well as the more recent aptamer technology, which can play a major role in BC immunotherapy.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Jack R Wall
- University of Notre Dame Australia, Sydney, Australia
| | - Somayeh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Alečković M, Li Z, Zhou N, Qiu X, Lulseged B, Foidart P, Huang XY, Garza K, Shu S, Kesten N, Li R, Lim K, Garrido-Castro AC, Guerriero JL, Qi J, Long HW, Polyak K. Combination Therapies to Improve the Efficacy of Immunotherapy in Triple-negative Breast Cancer. Mol Cancer Ther 2023; 22:1304-1318. [PMID: 37676980 PMCID: PMC10618734 DOI: 10.1158/1535-7163.mct-23-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Immune checkpoint inhibition combined with chemotherapy is currently approved as first-line treatment for patients with advanced PD-L1-positive triple-negative breast cancer (TNBC). However, a significant proportion of metastatic TNBC is PD-L1-negative and, in this population, chemotherapy alone largely remains the standard-of-care and novel therapeutic strategies are needed to improve clinical outcomes. Here, we describe a triple combination of anti-PD-L1 immune checkpoint blockade, epigenetic modulation thorough bromodomain and extra-terminal (BET) bromodomain inhibition (BBDI), and chemotherapy with paclitaxel that effectively inhibits both primary and metastatic tumor growth in two different syngeneic murine models of TNBC. Detailed cellular and molecular profiling of tumors from single and combination treatment arms revealed increased T- and B-cell infiltration and macrophage reprogramming from MHCIIlow to a MHCIIhigh phenotype in mice treated with triple combination. Triple combination also had a major impact on gene expression and chromatin profiles shifting cells to a more immunogenic and senescent state. Our results provide strong preclinical evidence to justify clinical testing of BBDI, paclitaxel, and immune checkpoint blockade combination.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ningxuan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Bethlehem Lulseged
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Xiao-Yun Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kodie Garza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Rong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Ana C. Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jennifer L. Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Surgery, Division of Breast Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Henry W. Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Kajihara N, Ge Y, Seino KI. Blocking of oestrogen signals improves anti-tumour effect regardless of oestrogen receptor alpha expression in cancer cells. Br J Cancer 2023; 129:935-946. [PMID: 37537255 PMCID: PMC10491758 DOI: 10.1038/s41416-023-02381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Anti-oestrogenic therapy has been used for breast cancer patients with oestrogen susceptibility cancer cells. However, little has been known about its potential role for immune cell biology within TME, particularly in cancer patients without oestrogen sensitivity of tumour cells. Therefore, we aimed to study the effect of oestrogen on immunity within TME. METHODS Using a clinical dataset, immune cells of humans and mice, female mice with and without ovaries, and several murine ERα-negative cancer cell lines, we evaluated the effect of oestrogen on immunity in TME. RESULTS Clinical data analysis suggested oestrogen's suppressive efficacy against CTLs. Additionally, in vitro and in vivo experiments revealed intra-tumoural CTLs' direct repressive action by oestrogen in both mice and humans; blockade of oestrogen signals cancelled its immunosuppression resulting in tumour growth reduction in vivo. Most notably, immunotherapy (immune checkpoint inhibitor; ICI) combined with anti-oestrogenic therapy exhibited a dramatic anti-tumour effect. CONCLUSIONS This study provides novel insights into how oestrogen contributes to tumour progression and a therapeutic rationale for blocking oestrogen signalling to boost the anti-tumour effect of ICI, regardless of tumour cells' ERα expression.
Collapse
Affiliation(s)
- Nabeel Kajihara
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Yunqi Ge
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.
| |
Collapse
|
6
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
7
|
Ning WJ, Liu X, Zeng HY, An ZQ, Luo WX, Xia NS. Recent progress in antibody-based therapeutics for triple-negative breast cancer. Expert Opin Drug Deliv 2022; 19:815-832. [PMID: 35738312 DOI: 10.1080/17425247.2022.2093853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a subtype of severely aggressive breast cancer that lacks the expression of oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2) and is highly metastatic and related to a poor prognosis. Current standard treatments are still limited to systemic chemotherapy, radiotherapy, and surgical resection. More effective treatments are urgently needed. AREAS COVERED The immunogenicity of TNBC has provided opportunities for the development of targeted immunotherapy. In this review, we focus on the recent development in antibody-based drug modalities, including angiogenesis inhibitors, immune checkpoint inhibitors, antibody-drug conjugates, immunoconjugates, T cell-redirecting bispecific antibodies and CAR-T cells, and their mechanisms of action in TNBC. EXPERT OPINION At present, the treatment of TNBC is still a major challenge that needs to be addressed. Novel immunotherapies are promising opportunities for improving the management of this aggressive disease.
Collapse
Affiliation(s)
- Wen-Jing Ning
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Hong-Ye Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zhi-Qiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wen-Xin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Li Y, Wu L, Liu Y, Ma S, Huang B, Feng X, Wang H. A novel multifunctional anti-PD-L1-CD16a-IL15 induces potent cancer cell killing in PD-L1-positive tumour cells. Transl Oncol 2022; 21:101424. [PMID: 35477065 PMCID: PMC9136603 DOI: 10.1016/j.tranon.2022.101424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Anti-PD-L1 single-domain antibodies were identified from hPD-L1-immunized camels. Three novel multifunctional antibodies, anti-PD-L1-CD16a, anti-PD-L1-IL15, and anti-PD-L1-CD16a-IL15, target PD-L1-positive cancer cells. Anti-PD-L1-IL15 and anti-PD-L1-CD16a-IL15, but not anti-PD-L1-CD16a, stimulate immune cell proliferation in vitro. The anti-PD-L1 antibodies can bind PD-L1-positive cells. Anti-PD-L1-CD16a-IL15 has the strongest antitumour activity, both in vitro and in vivo.
Cancer is the most acute disease and the leading cause of patient death worldwide. Both chemotherapy and molecular-based therapies play an important role in curing cancer. However, the median and overall survival of patients is poor. To date, immune therapies have changed the treatment methods for cancer patients. Programmed death ligand 1 (PD-L1, also known as B-H1, CD274) is a well-studied tumor antigen. PD-L1 is overexpressed in colon cancer, lung cancer, and so on and plays a vital role in cancer development. In this study, anti-PD-L1 single-domain antibodies were identified from recombinant human PD-L1 (rhPD-L1)-immunized llamas. Then, we generated a novel multifunctional anti-PD-L1-CD16a-IL15 antibody targeting PD-L1-positive tumor cells. Anti-PD-L1-CD16a-IL15 was constructed by linking the Interleukin-2 (IL-2) signal peptide, anti-PD-L1 single domain antibody (anti-PD-L1-VHH) and anti-cluster of differentiation 16a single domain antibody (anti-CD16a-VHH), and Interleukin-15/Interleukin-15 receptor alpha (IL15/IL-15Rα). This anti-PD-L1-CD16a-IL15 fusion protein can be expressed and purified from HEK-293F cells. In vitro, our data showed that the anti-PD-L1-CD16a-IL15 fusion protein can recruit T cells and drive natural killer cells (NK) with specific killing of PD-L1-overexpressing tumor cells. Furthermore, in the xenograft model, the anti-PD-L1-CD16a-IL15 fusion protein inhibited tumor growth with human peripheral blood mononuclear cells (PBMCs). These data suggested that the anti-PD-L1-CD16a-IL15 fusion protein has a latent function in antitumour activity, with better guidance for future cancer immunotherapy.
Collapse
Affiliation(s)
- Yumei Li
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Lingjun Wu
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yueying Liu
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siwen Ma
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Biyi Huang
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xianjing Feng
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| |
Collapse
|
9
|
Does conventional specimen radiography after neoadjuvant chemotherapy of breast cancer help to reduce the rate of second surgeries? Breast Cancer Res Treat 2021; 191:589-598. [PMID: 34878635 PMCID: PMC8831236 DOI: 10.1007/s10549-021-06466-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Purpose This is the first study to systematically evaluate the diagnostic accuracy of intraoperative specimen radiography on margin level and its potential to reduce second surgeries in patients treated with neoadjuvant chemotherapy. Methods This retrospective study included 174 cases receiving breast conserving surgery (BCS) after neoadjuvant chemotherapy (NACT) of primary breast cancer. Conventional specimen radiography (CSR) was performed to assess potential margin infiltration and recommend an intraoperative re-excision of any radiologically positive margin. The histological workup of the specimen served as gold standard for the evaluation of the accuracy of CSR and the potential reduction of second surgeries by CSR-guided re-excisions. Results 1044 margins were assessed. Of 47 (4.5%) histopathological positive margins, CSR identified 9 correctly (true positive). 38 infiltrated margins were missed (false negative). This resulted in a sensitivity of 19.2%, a specificity of 89.2%, a positive predictive value (PPV) of 7.7%, and a negative predictive value (NPV) of 95.9%. The rate of secondary procedures was reduced from 23 to 16 with a number needed to treat (NNT) of CSR-guided intraoperative re-excisions of 25. In the subgroup of patients with cCR, the prevalence of positive margins was 10/510 (2.0%), PPV was 1.9%, and the NNT was 85. Conclusion Positive margins after NACT are rare and CSR has only a low sensitivity to detect them. Thus, the rate of secondary surgeries cannot be significantly reduced by recommending targeted re-excisions, especially in cases with cCR. In summary, CSR after NACT is inadequate for intraoperative margin assessment but remains useful to document removal of the biopsy site clip.
Collapse
|
10
|
Bou-Dargham MJ, Draughon S, Cantrell V, Khamis ZI, Sang QXA. Advancements in Human Breast Cancer Targeted Therapy and Immunotherapy. J Cancer 2021; 12:6949-6963. [PMID: 34729098 PMCID: PMC8558657 DOI: 10.7150/jca.64205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Human breast cancer treatment regimens have evolved greatly due to the significant advances in understanding the molecular mechanisms and pathways of the common subtypes of breast cancer. In this review, we discuss recent progress in breast cancer targeted therapy and immunotherapy as well as ongoing clinical trials. We also highlight the potential of combination therapies and personalized approaches to improve clinical outcomes. Targeted therapies have surpassed the hormone receptors and the human epidermal growth factor receptor 2 (HER2) to include many other molecules in targetable pathways such as the epidermal growth factor receptor (EGFR), poly (adenosine diphosphate-ribose) polymerase (PARP), and cyclin-dependent kinase 4/6 (CDK4/6). However, resistance to targeted therapy persists, underpinning the need for more efficacious therapies. Immunotherapy is considered a milestone in breast cancer treatments, including the engineered immune cells (CAR-T cell therapy) to better target the tumor cells, vaccines to stimulate the patient's immune system against tumor antigens, and checkpoint inhibitors (PD-1, PD-L1, and CTLA4) to block molecules that mediate immune inhibition. Targeted therapies and immunotherapy tested in breast cancer clinical trials are discussed here, with special emphasis on combinatorial approaches which are believed to maximize treatment efficacy and enhance patient survival.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Sophia Draughon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Vance Cantrell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America.,Department of Chemistry and Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
11
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
12
|
Tu K, Yu Y, Wang Y, Yang T, Hu Q, Qin X, Tu J, Yang C, Kong L, Zhang Z. Combination of Chidamide-Mediated Epigenetic Modulation with Immunotherapy: Boosting Tumor Immunogenicity and Response to PD-1/PD-L1 Blockade. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39003-39017. [PMID: 34433253 DOI: 10.1021/acsami.1c08290] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Improving tumor immunogenicity is critical for increasing the responsiveness of triple-negative breast cancer (TNBC) to anti-PD-(L)1 treatment. Here, we verified that chidamide (CHI), an epigenetic modulator, could elicit immunogenic cell death within TNBC to enhance cancer immunogenicity and elicit an antitumor immune response. Additionally, CHI increased the expression level of PD-L1, MHC I, and MHC II on cancer cells, which contributed to T-cell recognition and PD-1/PD-L1 blockade therapy response. The synergistic antitumor efficacy of CHI and PD-L1 blockade therapy was further explored through liposomes co-delivering CHI and BMS-202 (a small-molecule PD-L1 inhibitor). The liposomes possessed good biocompatibility, security, and controllable drug release and endowed therapeutics drugs with favorable tumor accumulation. Furthermore, the drug-loaded liposomes could obviously boost the antitumor immunity of TNBC through CHI-enhanced tumor immunogenicity and BMS-202-mediated PD-L1 blockade, thereby effectively inhibiting the growth of primary and metastatic tumors with an inhibitory rate of metastasis of up to 96%. In summary, this work provided a referable and optional approach for clinical antitumor therapy based on the combination of an epigenetic modulator and PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Kun Tu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Pattarawat P, Hunt JT, Poloway J, Archibald CJ, Wang HCR. A triple combination gemcitabine + romidepsin + cisplatin to effectively control triple-negative breast cancer tumor development, recurrence, and metastasis. Cancer Chemother Pharmacol 2021; 88:415-425. [PMID: 34043046 DOI: 10.1007/s00280-021-04298-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive, lethal, heterogeneous type of breast cancer (BC). TNBC tends to have a lower response rate to chemotherapy and a lower 5-year survival rate than other types of BC due to recurrence and metastasis. Our previous study revealed that a combination of gemcitabine, romidepsin, and cisplatin was efficacious in controlling TNBC tumor development. In this study, we extended our investigation of gemcitabine + romidepsin + cisplatin in controlling TNBC tumor recurrence and metastasis. METHODS We investigated the ability of gemcitabine + romidepsin + cisplatin to control cell survival and invasiveness using cell viability, soft agar colony formation, and transwell invasion assays. We determined the efficacy of gemcitabine + romidepsin + cisplatin in controlling tumor recurrence and metastasis using cell-derived xenograft animal models. We used immunoblotting to study signaling modulators regulated by gemcitabine + romidepsin + cisplatin in TNBC cells and tumor tissues. RESULTS Treatment with gemcitabine + romidepsin + cisplatin reduced the TNBC MDA-MB231 and MDA-MB468 cell survival to ~ 50% and ~ 15%, as well as invasiveness to ~ 31% and ~ 13%, respectively. Gemcitabine + romidepsin + cisplatin suppressed modulators involved in epithelial-mesenchymal transition in an ROS-dependent manner. Controlling tumor recurrence, the Gem plus Rom + Cis regimen (~ 112%) was more efficacious than the Gem plus Cis regimen (~ 21%) in tumor growth inhibition. The Gem plus Rom + Cis regimen efficaciously reduced the development of metastatic nodules to 20% in animals. CONCLUSION The gemcitabine plus romidepsin + cisplatin regimen was highly efficacious in controlling TNBC tumor development, recurrence, and metastasis in animals. The combination regimen should be poised for efficient translation into clinical trials for controlling the recurrence and metastasis, ultimately contributing to reducing mortality and improving TNBC patients' quality of life.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Jessica T Hunt
- Animal Resource Laboratory, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Jacob Poloway
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Collin J Archibald
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Dewi FN, Cline JM. Nonhuman primate model in mammary gland biology and neoplasia research. Lab Anim Res 2021; 37:3. [PMID: 33397518 PMCID: PMC7784333 DOI: 10.1186/s42826-020-00053-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Research on breast cancer pathogenesis, prevention and drug development remains an important field as this disease is still one of the leading causes of cancer death worldwide. Nonhuman primates, particularly macaque species, may serve as a highly translational animal model in breast cancer studies due to their similarity with humans in genetics, anatomy, reproductive and endocrine physiology including mammary gland development profile. The use of nonhuman primates in biomedical research, however, requires high ethical standards and an increasing expectation to improve strategies to replace, reduce and refine their use. Here, we discuss some key features of nonhuman primate mammary gland biology relevant to their strengths and limitations as models in studies of breast development and cancer risk.
Collapse
Affiliation(s)
- Fitriya N Dewi
- Primate Research Center at IPB University, Jl. Lodaya II No.5, Bogor, West Java, 16151, Indonesia.
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|