1
|
Asem A, Yang C, De Vos S, Mahmoudi F, Xia L, Shen CY, Hontoria F, Rogers DC, Gajardo G. Mitogenomic phylogeny and divergence time estimation of Artemia Leach, 1819 (Branchiopoda: Anostraca) with emphasis on parthenogenetic lineages. BMC Genomics 2025; 26:228. [PMID: 40065211 PMCID: PMC11892183 DOI: 10.1186/s12864-025-11391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The brine shrimp Artemia, a crustacean adapted to the extreme conditions of hypersaline environments, comprises nine regionally distributed sexual species scattered (island-like) over heterogeneous environments and asexual (parthenogenetic) lineages with different ploidies. Such sexual and asexual interaction within the genus raises questions regarding the origin and time of divergence of both sexual species and asexual lineages, including the persistence of the latter over time, a problem not yet clarified using single mitochondrial and nuclear markers. Based on the complete mitochondrial genome of all species and parthenogenetic lineages, this article first describes the mitogenomic characteristics (nucleotide compositions, genome mapping, codon usage, and tRNA secondary structure) of sexual species and asexual types and, secondly, it provides a comprehensive updated phylogenetic analysis. Molecular dating and geographical evidence suggest that the ancestral Artemia taxon originated in ca. 33.97 Mya during the Paleogene Period. The mitogenomic comparisons suggest that the common ancestor of diploid and triploid parthenogenetic lineages (ca. 0.07 Mya) originated from a historical ancestor (ca. 0.61 Mya) in the Late Pleistocene. Additionally, the common ancestor of tetraploid and pentaploid parthenogenetic lineages (ca. 0.05 Mya) diverged from a historical maternal ancestor with A. sinica (ca. 0.96 Mya) in the early Pleistocene. The parthenogenetic lineages do not share a direct ancestor with any sexual species. The Asian clade ancestor diverged more recently (ca. 14.27 Mya, Middle Miocene). The mitogenomic characteristics, maternal phylogenetic tree, and especially divergence time prove that A. monica and A. franciscana are two biological species.
Collapse
Affiliation(s)
- Alireza Asem
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572000, China.
| | - Chaojie Yang
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572000, China
| | - Stephanie De Vos
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Aquakultur, Sweden
| | - Farnaz Mahmoudi
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572000, China
| | - Lidong Xia
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chun-Yang Shen
- Department of Biology, Chengde Medical University, Chengde, 067000, China
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de La Sal (IATS, CSIC), Ribera de Cabanes (Castellón), 12595, Spain.
| | - D Christopher Rogers
- GRDA Scenic Rivers & Watershed Research Laboratory, Northeastern State University, 611 N Grand Ave, Tahlequah, OK, 74464-2302, USA.
| | - Gonzalo Gajardo
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, 5290000, Chile.
| |
Collapse
|
2
|
Rugman-Jones PF, Dodge CE, Stouthamer R. Pervasive heteroplasmy in an invasive ambrosia beetle (Scolytinae) in southern California. Heredity (Edinb) 2024; 133:388-399. [PMID: 39266674 PMCID: PMC11589772 DOI: 10.1038/s41437-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Heteroplasmy, the presence of multiple mitochondrial genotypes (mitotypes) within an individual, has long been thought to be a rare aberrance that is quickly removed by selection or drift. However, heteroplasmy is being reported in natural populations of eukaryotes with increasing frequency, in part due to improved diagnostic methods. Here, we report a seemingly stable heteroplasmic state in California populations of the polyphagous shothole borer (PSHB), Euwallacea fornicatus; an invasive ambrosia beetle that is causing significant tree dieback. We develop and validate a qPCR assay utilizing locked nucleic acid probes to detect different mitotypes, and qualitatively assess heteroplasmy in individual PSHB. We prove the utility of this assay by: (1) mitotyping field-collected PSHB, documenting the prevalence of heteroplasmy across its range in California; and, (2) measuring relative titers of each mitotype across multiple generations of heteroplasmic laboratory colonies to assess the stability of transmission through the maternal germline. We show that our findings are unlikely to be explained by the existence of NUMTs by next generation sequencing of contiguous sections of mitochondrial DNA, where each of the observed heteroplasmic sites are found within fully functional coding regions of mtDNA. Subsequently, we find heteroplasmic individuals are common in Californian field populations, and that heteroplasmy persists for at least 10 generations in experimental colonies. We also looked for evidence of the common occurrence of paternal leakage, but found none. In light of our results, we discuss competing hypotheses as to how heteroplasmy may have arisen, and continues to perpetuate, in Californian PSHB populations.
Collapse
Affiliation(s)
- Paul F Rugman-Jones
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - Christine E Dodge
- Department of Entomology, University of California, Riverside, CA, 92521, USA
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 W. Truck Rd, Buzzards Bay, MA, 02542, USA
| | - Richard Stouthamer
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
3
|
Kartavtsev YP, Masalkova NA. Structure, Evolution, and Mitochondrial Genome Analysis of Mussel Species (Bivalvia, Mytilidae). Int J Mol Sci 2024; 25:6902. [PMID: 39000014 PMCID: PMC11241113 DOI: 10.3390/ijms25136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.
Collapse
Affiliation(s)
- Yuri Phedorovich Kartavtsev
- A.V. Zhirmunsky National Scientific Center of Marine Biology (NSCMB), Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | |
Collapse
|
4
|
Abstract
The apicomplexan parasite Cyclospora cayetanensis causes seasonal foodborne outbreaks of the gastrointestinal illness cyclosporiasis. Prior to the coronavirus disease-2019 pandemic, annually reported cases were increasing in the USA, leading the US Centers for Disease Control and Prevention to develop a genotyping tool to complement cyclosporiasis outbreak investigations. Thousands of US isolates and 1 from China (strain CHN_HEN01) were genotyped by Illumina amplicon sequencing, revealing 2 lineages (A and B). The allelic composition of isolates was examined at each locus. Two nuclear loci (CDS3 and 360i2) distinguished lineages A and B. CDS3 had 2 major alleles: 1 almost exclusive to lineage A and the other to lineage B. Six 360i2 alleles were observed – 2 exclusive to lineage A (alleles A1 and A2), 2 to lineage B (B1 and B2) and 1 (B4) was exclusive to CHN_HEN01 which shared allele B3 with lineage B. Examination of heterozygous genotypes revealed that mixtures of A- and B-type 360i2 alleles occurred rarely, suggesting a lack of gene flow between lineages. Phylogenetic analysis of loci from whole-genome shotgun sequences, mitochondrial and apicoplast genomes, revealed that CHN_HEN01 represents a distinct lineage (C). Retrospective examination of epidemiologic data revealed associations between lineage and the geographical distribution of US infections plus strong temporal associations. Given the multiple lines of evidence for speciation within human-infecting Cyclospora, we provide an updated taxonomic description of C. cayetanensis, and describe 2 novel species as aetiological agents of human cyclosporiasis: Cyclospora ashfordi sp. nov. and Cyclospora henanensis sp. nov. (Apicomplexa: Eimeriidae).
Collapse
|
5
|
Nie H, Kartavtsev YP. The complete mitochondrial genome of Mactra chinensis (Bivalvia: Macridae). Mitochondrial DNA B Resour 2021; 6:2812-2815. [PMID: 34514137 PMCID: PMC8425691 DOI: 10.1080/23802359.2021.1970635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/15/2021] [Indexed: 10/25/2022] Open
Abstract
The structure and composition of the mitogenome of a bivalve mollusk, denoted as Mactra sp. (MT780813), has been obtained. The genome has a variable organization: it includes 12 protein-coding genes, 28 tRNAs, and two rRNA genes. Its content is sufficiently different from that of nearest specimen, accessed from GenBank, supposedly belonging to the other gender. All genes are encoded on the "+"-strand. All protein-coding genes are initiated with ATG codon. Analysis confirms the close topological position of the GenBank Mactra chinensis (KJ754823) and our M. sp. specimen on gene tree. Above data suggesting female- vs. male-type mitogenomes or cryptic species presence.
Collapse
Affiliation(s)
- Hongtao Nie
- Laboratory of Engineering and Technology Research, Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yuri Ph. Kartavtsev
- Laboratory of Molecular Systematic, A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
Kartavtsev YP. Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals (Basel) 2021; 11:1473. [PMID: 34065552 PMCID: PMC8160991 DOI: 10.3390/ani11051473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/27/2023] Open
Abstract
Application of molecular genetic markers appeared to be very fruitful in achieving many goals, including (i) proving the theoretic basements of general biology and (ii) assessment of worldwide biodiversity. Both are provided in the present meta-analysis and a review as the main signal. One of the basic current challenges in modern biology in the face of new demands in the 21st century is the validation of its paradigms such as the synthetic theory of evolution (STE) and biological species concept (BSC). Another of most valuable goals is the biodiversity assessment for a variety of social needs including free web-based information resources about any living being, renovation of museum collections, nature conservation that recognized as a global project, iBOL, as well as resolving global trading problems such as false labeling of species specimens used as food, drug components, entertainment, etc. The main issues of the review are focused on animals and combine four items. (1) A combination of nDNA and mtDNA markers best suits the identification of hybrids and estimation of genetic introgression. (2) The available facts on nDNA and mtDNA diversity seemingly make introgression among many taxa obvious, although it is evident, that introgression may be quite restricted or asymmetric, thus, leaving at least the "source" taxon (taxa) intact. (3) If we consider sexually reproducing species in marine and terrestrial realms introgressed, as it is still evident in many cases, then we should recognize that the BSC, in view of the complete lack of gene flow among species, is inadequate because many zoological species are not biological ones yet. However, vast modern molecular data have proven that sooner or later they definitely become biological species. (4) An investigation into the fish taxa divergence using the BOLD database shows that most gene trees are basically monophyletic and interspecies reticulations are quite rare.
Collapse
Affiliation(s)
- Yuri Phedorovich Kartavtsev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|