1
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
2
|
Drzewiński A, Marć M, Wolak WW, Dudek MR. Effect of Magnetic Heating on Stability of Magnetic Colloids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3064. [PMID: 36080101 PMCID: PMC9458204 DOI: 10.3390/nano12173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Stable aqueous suspension of magnetic nanoparticles is essential for effective magnetic hyperthermia and other applications of magnetic heating in an alternating magnetic field. However, the alternating magnetic field causes strong agglomeration of magnetic nanoparticles, and this can lead to undesirable phenomena that deteriorate the bulk magnetic properties of the material. It has been shown how this magnetic field influences the distribution of magnetic agglomerates in the suspension. When investigating the influence of the sonication treatment on magnetic colloids, it turned out that the hydrodynamic diameter as a function of sonication time appeared to have a power-law character. The effect of magnetic colloid ageing on magnetic heating was discussed as well. It was shown how properly applied ultrasonic treatment could significantly improve the stability of the colloid of magnetic nanoparticles, ultimately leading to an increase in heating efficiency. The optimal sonication time for the preparation of the magnetic suspension turned out to be time-limited, and increasing it did not improve the stability of the colloid. The obtained results are important for the development of new materials where magnetic colloids are used and in biomedical applications.
Collapse
|
3
|
Bisla A, Rautela R, Yadav V, Saini G, Singh P, Ngou AA, Kumar A, Ghosh S, Kumar A, Bag S, Mahajan S, Srivastava N. Synthesis of iron oxide nanoparticles-antiubiquitin antibodies conjugates for depletion of dead/damaged spermatozoa from buffalo (Bubalus bubalis) semen. Biotechnol Appl Biochem 2020; 68:1453-1468. [PMID: 33135803 DOI: 10.1002/bab.2066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022]
Abstract
The synthesis of iron oxide nanoparticles (IONPs)-antiubiquitin antibodies (Abs) complex for depletion of dead/damaged spermatozoa from buffalo semen was done. The IONPs synthesized were round in shape with size of 12.09 ± 0.91 nm. At the end of the two-step functionalization, that is, silanization and pegylation of bare IONPs and bioconjugation of functionalized IOPNs, particles with the sizes of 19.15 ± 1.46, 20.72 ± 0.95, and 73.01 ± 7.56 nm, respectively, were obtained. Twenty-four semen samples from four bulls with mean individual progressive motility (%) and sperm concentration (million/mL) of 77.1 ± 0.9 and 1,321.2 ± 84.7, respectively, were divided into Group I (control), and treatment groups viz. Groups II, III, and IV; with each group containing 150 ± 25 million dead/damaged spermatozoa. The IONPs-Abs complex was added at the ratio of 1:1 (0.5 μg/mL), 1:2 (1.0 μg/mL), and 1:4 (2.0 μg/mL), respectively, in the Groups II, III, and IV. The mean efficiency (%) of nanopurification was estimated to be greater in nanopurified semen with the increasing doses of the IONPs-Abs complex. A reduction of 29.3 ± 6.4%, 48.4 ± 5.3%, and 55.4 ± 4.4% in dead/damaged spermatozoa following nanopurification in Groups II, III, and IV, respectively, was observed. The study shows that in-house synthesized IONPs-Abs complex can be successfully used to deplete dead/damaged spermatozoa from buffalo semen with improvement in quality.
Collapse
Affiliation(s)
- Amarjeet Bisla
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Rupali Rautela
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Vinay Yadav
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Gitesh Saini
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Praveen Singh
- BEMI Section, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Athanas Alex Ngou
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Subrata Ghosh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Ajay Kumar
- Division of Animal Biochemistry, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Sadhan Bag
- Division of Veterinary Physiology and Climatology, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Neeraj Srivastava
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| |
Collapse
|