1
|
Pharmacological Aspects of Schiff Base Metal Complexes: A Critical Review. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
2
|
Begum F, Rehman NU, Khan A, Iqbal S, Paracha RZ, Uddin J, Al-Harrasi A, Lodhi MA. 2-Mercaptobenzimidazole clubbed hydrazone for Alzheimer’s therapy: In vitro, kinetic, in silico, and in vivo potentials. Front Pharmacol 2022; 13:946134. [PMID: 36059999 PMCID: PMC9428891 DOI: 10.3389/fphar.2022.946134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s is a type of dementia that affects the affected person’s thinking, memory, and behavior. It is a multifactorial disease, developed by the breakdown of the neurotransmitter acetylcholine via acetylcholinesterase (AChE). The present study was designed to evaluate potential inhibitors of acetylcholinesterase that could be used as a therapeutic agent against Alzheimer’s disease (AD). For this course, synthetic compounds of the Schiff bases class of 2-mercaptobenzimidazole hydrazone derivatives (9–14) were determined to be potent acetylcholinesterase inhibitors with IC50 values varying between 37.64 ± 0.2 and 74.76 ± 0.3 μM. The kinetic studies showed that these are non-competitive inhibitors of AChE. Molecular docking studies revealed that all compounds accommodate well in the active site and are stabilized by hydrophobic interactions and hydrogen bonding. Molecular dynamics (MD) simulations of selected potent inhibitors confirm their stability in the active site of the enzyme. Moreover, all compounds showed antispasmodic and Ca2+ antagonistic activities. Among the selected compounds of 2-mercaptobenzimidazole hydrazone derivatives, compound 11 exhibited the highest activity on spontaneous and K+-induced contractions, followed by compound 13. Therefore, the Ca2+ antagonistic, AChE inhibition potential, and safety profile of these compounds in the human neutrophil viability assay make them potential drug candidates against AD in the future.
Collapse
Affiliation(s)
- Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Birkat-ul-Mouz, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Birkat-ul-Mouz, Oman
- *Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi, ; Muhammad Arif Lodhi,
| | - Sajid Iqbal
- Department of Industrial Biotechnology, Atta-ur-Raman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Birkat-ul-Mouz, Oman
- *Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi, ; Muhammad Arif Lodhi,
| | - Muhammad Arif Lodhi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
- *Correspondence: Ajmal Khan, ; Ahmed Al-Harrasi, ; Muhammad Arif Lodhi,
| |
Collapse
|