1
|
Kritsky DC. Species of Dactylogyridae (Platyhelminthes: Monogenoidea) infecting marine fishes of Moreton Bay, Queensland, Australia, with proposals of Pleuronectitrema n. gen. and Ecnomotrema n. gen. and descriptions of 13 new species. Parasite 2023; 30:61. [PMID: 38117271 PMCID: PMC10732142 DOI: 10.1051/parasite/2023053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Twenty-nine dactylogyrid species were reported from teleosts collected during a survey of the parasites of fishes of Moreton Bay, Queensland, Australia, in 2016. Two new genera, Ecnomotrema n. gen. and Pleuronectitrema n. gen., were proposed, and 13 new species were illustrated and described: Atherinicus difficilis n. sp., Diversohamulus similis n. sp., and Ecnomotrema cetiosum n. sp. from Atherinomorus vaigiensis; Haliotrema apiculum n. sp. from Pempheris schwenkii; Haliotrema tugulduriforme n. sp. from Scarus ghobban; Lethrinitrema australiense n. sp., and Lethrinitrema lituus n. sp. from Lethrinus nebulosus; Tetrancistrum siganioides n. sp. from Siganus fuscescens; Ligophorus bostrychus n. sp. from Planiliza subviridis; Neohaliotrema gemmula n. sp. from Abudefduf vaigiensis; Neohaliotrema moretonense n. sp. from Ab. vaigiensis and Ab. bengalensis; and Pleuronectitrema spirula n. sp. from Pseudorhombus arsius (all from Moreton Bay); Pleuronectitrema kuwaitense Kritsky & Sey n. sp. was described from specimens collected from P. arsius in Kuwait during 1996. Ten new host records were recorded: Chauhanellus duriensis Lim, 1994 and Hamatopeduncularia thalassini Bychowsky & Nagibina, 1969 from Pararius proximus; Diplectanotrema sp. 1 and sp. 2 from Sillago maculata and Goniistius vestitus, respectively; Diversohamulus tricuspidatus Bychowsky & Nagibina, 1969 from At. vaigiensis; Hal. cf. dempsteri (Mizelle & Price, 1964) Young, 1968 from Prionurus microlepidotus; Hal. spirale Yamaguti, 1968 from Upeneus tragula; Ligophorus kaohsianghsieni (Gussev, 1962) Gussev, 1985 from Planiliza subviridis; and Neohaliotrema malayense Lim & Gibson, 2010 from Ab. bengalensis and Ab. whitleyi. Twenty-five new faunal records for Moreton Bay were recorded, including the new species listed above and C. duriensis, Diplectanotrema sp. 1 and sp. 2, Diversohamulus tricuspidatus Bychowsky & Nagibina, 1969, Glyphidohaptor phractophallus Kritsky, Galli, & Yang, 2007, Hal. cf. dempsteri, Hal. johnstoni Bychowsky & Nagibina, 1970, Hal. spirale, Yamaguti, 1968 Hamatopeduncularia thalassini Bychowsky & Nagibina, 1969, Lethrinitrema nebulosum Sun, Li, & Yang, 2014, Ligophorus kaohsianghsieni (Gussev, 1962) Gussev, 1985, Ligophorus parvicopulatrix Soo & Lim, 2012, and Neohaliotrema malayense Lim & Gibson, 2010. Three new combinations were proposed: Hal. spariense Roubal, 1981 as Euryhaliotrema spariense (Roubal, 1981) n. comb.; and Hal. arsiosa Venkatanarasaiah, 1984 and Hal. youngi Venkatanarasaiah, 1984 as Pleuronectitrema arsiosa (Venkatanarasaiah, 1984) n. comb. and Pleuronectitrema youngi (Venkatanarasaiah, 1984) n. comb., respectively; Haliotrema sp. of Zhang is transferred to Pleuronectitrema as Pleuronectitrema sp. Hal. ctenochaeti Yamaguti, 1968 was replaced with Hal. asymphylum n. nom. to remove it from homonymy with Hal. ctenochaeti Young, 1968. Pseudohaliotrematoides zancli Yamaguti, 1968 was transferred to Haliotrema as Haliotrema hawaiiense n. nom. Hal. zancli Yamaguti, 1968 was considered a junior subjective synonym of Hal. dempsteri.
Collapse
Affiliation(s)
- Delane C. Kritsky
- School of Health Professions, Campus Box 8090, Idaho State University Pocatello Idaho 83209 USA
| |
Collapse
|
2
|
Diversification processes between monogenoids (Dactylogyridae) and their marine catfish (Siluriformes: Ariidae) from the Atlantic coast of South America. Parasitology 2023; 150:184-194. [PMID: 36444641 PMCID: PMC10106279 DOI: 10.1017/s0031182022001615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Due to their high specificity, monogenoids from fish provide an interesting model to study historical associations of hosts and parasites. High agreement between host and parasite phylogeny is often interpreted as evidence of cospeciation. However, cophylogenetic signal may also arise from other, either adaptive or non-adaptive, processes. We applied the recently developed Cophylospace Framework to better understand the evolutionary relationship between monogenoids and marine catfish from the Atlantic coast of South America. The associations between 12 marine catfish and 10 monogenoid species were assessed. Molecular data of host and parasite species were used for phylogenetic reconstruction. We used anchor morphology based on Procrustes coordinates to evaluate whether closely related hosts are associated with morphologically similar parasites. To assess the association between parasite phylogeny and host morphology, we produced a distance matrix based on morphological characters of catfishes. Agreement between phylogenies and between phylogeny and morphology was measured using Procrustes R2 computed with PACo. The parasite phylogeny obtained in this study represents the first complete phylogenetic hypothesis of monogenoids parasitizing ariids from South America. The Cophylospace analysis suggested that phylogenetic and morphological distance of monogenoids contributes similarly to explain the pattern of host–parasite associations, whereas parasite phylogeny is more strongly associated with the morphological traits of the hosts than with host phylogeny. This evidence suggests that cospeciation is not a major force accounting for diversification in the monogenoids studied. Rather host morphological traits seem to be a more important driver, which conforms with evidence from other host‒monogenoid systems.
Collapse
|
3
|
Kmentová N, Cruz-Laufer AJ, Pariselle A, Smeets K, Artois T, Vanhove MPM. Dactylogyridae 2022: a meta-analysis of phylogenetic studies and generic diagnoses of parasitic flatworms using published genetic and morphological data. Int J Parasitol 2022; 52:427-457. [PMID: 35245493 DOI: 10.1016/j.ijpara.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Dactylogyridae is one of the most studied families of parasitic flatworms with more than 1000 species and 166 genera described to date including ecto- and endoparasites. Dactylogyrid monogeneans were suggested as model organisms for host-parasite macroevolutionary and biogeographical studies due to the scientific and economic importance of some of their host lineages. Consequently, an array of phylogenetic research into different dactylogyrid lineages has been produced over the past years but the last family-wide study was published 16 years ago. Here, we provide a meta-analysis of the phylogenetic relationships of Dactylogyridae including representatives of all genera with available molecular data (n=67). First, we investigate the systematic informativeness of morphological characters widely used to diagnose dactylogyrid genera through a parsimony analysis of the characters, character mapping, and phylogenetic comparative methods. Second, we provide an overview of the current state of the systematics of the family and its subfamilies, and summarise potentially poly- and paraphyletic genera. Third, we elaborate on the implications of taxonomic, citation, and confirmation bias in past studies. Fourth, we discuss host range, biogeographical, and freshwater-marine patterns. We found two well-supported macroclades which we assigned to the subfamilies Dactylogyrinae and Ancyrocephalinae. These subfamilies further include 16 well-supported clades with only a few synapomorphies that could be deduced from generic diagnoses in the literature. Furthermore, few morphological characters considered systematically informative at the genus level display a strong phylogenetic signal. However, the parsimony analysis suggests that these characters provide little information on the relationships between genera. We conclude that a strong taxonomic bias and low coverage of DNA sequences and regions limit knowledge on morphological and biogeographical evolutionary patterns that can be inferred from these results. We propose addressing potential citation and confirmation biases through a 'level playing field' multiple sequence alignment as provided by this study.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Armando J Cruz-Laufer
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Antoine Pariselle
- ISEM, CNRS, Université de Montpellier, IRD, Montpellier, France; Laboratory "Biodiversity, Ecology and Genome", Mohammed V University in Rabat, Faculty of Sciences, 4 avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Karen Smeets
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| |
Collapse
|
4
|
Morphological and molecular characterization of Udonella brasiliensis n. sp. (Monogenoidea), an epibiont on Caligus sp. parasite of Ariidae from the southeastern coast of Brazil. Parasitol Int 2021; 83:102371. [PMID: 33932600 DOI: 10.1016/j.parint.2021.102371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
The present study describes Udonella brasiliensis n. sp., an epibiont found on Caligus sp., a parasite the ariids Genidens barbus (Lacepède) and Aspistor luniscutis (Valenciennes), caught on the coast of the state of São Paulo, Brazil. Morphological and molecular analyses (partial 18S rDNA) were carried out. The morphological data showed that U. brasiliensis n. sp. can be distinguished from current valid species by its morphometric attributes (e.g., body, pharynx, ovary and testis), while the molecular information supports the proposal of a new species. The 18S rDNA phylogenetic analysis shows a close relationship between the new species and Udonella australis Carvajal & Sepulveda, in a subclade formed of species that parasitize South American fish. Finally, this study also discusses a scenario of initial irradiation for udonellids.
Collapse
|
5
|
Soo OYM, Tan WB. Hamatopeduncularia Yamaguti, 1953 (Monogenea: Ancylodiscoididae) from catfish off Peninsular Malaysia: Description of two new species and insights on the genus. Parasitol Int 2021; 81:102282. [PMID: 33444771 DOI: 10.1016/j.parint.2021.102282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 11/28/2022]
Abstract
Hamatopeduncularia longiangusticirrata sp. nov. and H. petalumvaginata sp. nov. were collected from Arius maculatus and Nemapteryx caelata, respectively from Tanjung Karang, Peninsular Malaysia. Morphological and molecular investigations were carried out to ascertain the identity of the new species. The two new species differ from previously described Hamatopeduncularia species in the morphology of the male and female reproductive organs. Hamatopeduncularia longiangusticirrata sp. nov. possesses a long penis similar to H. elongata, H. longicopulatrix, H. brisbanensis, H. major and H. petalumvaginata sp. nov., but differs in having a thread-like tapering distal end and can be distinguished from H. brisbanensis and H. major in not having an accessory piece. Hamatopeduncularia longiangusticirrata sp. nov. is also unique in having an ornamented penis initial and a vaginal tube surrounded by fine hair-like structures. Hamatopeduncularia petalumvaginata sp. nov. possesses a simple penis without an accessory piece and a petaloid vaginal opening that resembles the arrangement of petals on a flower. Maximum likelihood trees were constructed from partial 28S and 18S rDNA sequences of the two new species and other ancylodiscoidids to reveal a strongly supported monophyletic branch consisting of the two new species for both markers. According to Lim's classification in 1996 of Hamatopeduncularia species penis type, H. petalumvaginata sp. nov. has been classified within the elegans-type and H. longiangusticirrata sp. nov. is proposed as the longiangusticirrata-type.
Collapse
Affiliation(s)
- O Y M Soo
- UCSI University KL, No.1, Jalan Menara Gading, Taman Connaught 56000 Cheras, Kuala Lumpur, Malaysia.
| | - W B Tan
- School of Science, Monash University, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
6
|
An integrative taxonomic study of Susanlimocotyle narina n. gen. n. sp. (Monogenoidea, Dactylogyridae) from the nasal cavities of a marine catfish (Siluriformes, Ariidae) from the Atlantic Amazon Coast of Brazil and new molecular data of Chauhanellus spp. Parasitol Int 2020; 81:102271. [PMID: 33321223 DOI: 10.1016/j.parint.2020.102271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
Based on a taxonomic approach, combining morphological characters with DNA sequences (i.e.,18S rDNA, ITS1, 5.8S rDNA and ITS2), Susanlimocotyle n. gen. is proposed to accommodates Susanlimocotyle narina n. sp. from the nostrils of the ariid Sciades herzbergii (Bloch) from the coast of the state of Pará, Brazil. Susanlimocotyle n. gen. is characterized by species possessing: an intestinal ceca confluent posteriorly; a male copulatory organ, comprising a variable tube, articulated with the accessory piece; a sclerotized vagina, vaginal aperture dextro-ventral; an onchium; a robust ventral bar; two dorsal bars; a ventral anchor with elongated shaft and a dorsal anchor with deep root expanding into wings. In addition, new molecular data of Chauhanellus spp. are also provided and used for the evaluation of the phylogenetic relationships among monogenoids parasitizing siluriforms. Susanlimocotyle n. gen. exhibited a higher genetic divergence level for 18S rDNA (4.6 to 7.2% [83-130 bp]) with respect to Chauhanellus spp. despite sharing S. herzbergii as a host, than Hamatopeduncularia spp., (4.1 to 5.8% [75-110 bp]) from Oriental ariids. For the 18S rDNA, 5.8S rDNA, ITS1 and ITS2 regions, C. boegeri and C. susamlimae were observed to have the smallest interspecific distances, and C. velum was revealed to be the most genetically distant species to Chauhanellus. The proposal for Susanlimocotyle n. gen. is also supported by phylogenetic analysis based on the 18S rDNA gene, which supports the close relationship between the new genus and Hamatopeduncularia and Chauhanellus from ariids from the South America and Oriental regions. Moreover, the patterns towards the shared diversification between monogenoids and their ariid hosts were addressed.
Collapse
|
7
|
Modeo L, Salvetti A, Rossi L, Castelli M, Szokoli F, Krenek S, Serra V, Sabaneyeva E, Di Giuseppe G, Fokin SI, Verni F, Petroni G. "Candidatus Trichorickettsia mobilis", a Rickettsiales bacterium, can be transiently transferred from the unicellular eukaryote Paramecium to the planarian Dugesia japonica. PeerJ 2020; 8:e8977. [PMID: 32351785 PMCID: PMC7183750 DOI: 10.7717/peerj.8977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont "Candidatus (Ca.) Trichorickettsia mobilis" was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians' enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.
Collapse
Affiliation(s)
- Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Department of Biosciences, University of Milan, Milan, Italy
| | - Franziska Szokoli
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany
| | - Sascha Krenek
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany.,Department of River Ecology, Helmholtz Center for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Elena Sabaneyeva
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| |
Collapse
|