1
|
Tittarelli E, Carotti E, Carducci F, Barucca M, Canapa A, Biscotti MA. Transposable element dynamics in Xenopus laevis embryogenesis: a tale of two coexisting subgenomes. Mob DNA 2025; 16:17. [PMID: 40200366 PMCID: PMC11980090 DOI: 10.1186/s13100-025-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
The African clawed frog Xenopus laevis has an allotetraploid genome consisting of two subgenomes referred as L relating to the Long chromosomes and S relating to the Short chromosomes. While the L subgenome presents conserved synteny with X. tropicalis chromosomes, the S subgenome has undergone rearrangements and deletions leading to differences in gene and transposable element (TE) content between the two subgenomes. The asymmetry in the evolution of the two subgenomes is also detectable in gene expression levels and TE mobility. TEs, also known as "jumping genes", are mobile genetic elements having a key role in genome evolution and gene regulation. However, due to their potential deleterious effects, TEs are controlled by host defense mechanisms such as the nucleosome remodeling and deacetylase (NuRD) complex and the Argonaute proteins that mainly modify the heterochromatin environment. In embryogenesis, TEs can escape the silencing mechanisms during the maternal-to-zygotic transition when a transcriptionally permissive environment is created. Moreover, further evidence highlighted that the reactivation of TEs during early developmental stages is not the result of this genome-wide reorganization of chromatin but it is class and stage-specific, suggesting a precise regulation. In line with these premises, we explored the impact of TE transcriptional contribution in six developmental stages of X. laevis. Overall, the expression pattern referred to the entire set of transcribed TEs was constant across the six developmental stages and in line with their abundance in the genome. However, focusing on subgenome-specific TEs, our analyses revealed a distinctive transcriptional pattern dominated by LTR retroelements in the L subgenome and LINE retroelements in the S subgenome attributable to young copies. Interestingly, genes encoding proteins involved in maintaining the repressive chromatin environment were active in both subgenomes highlighting that TE controlling systems were active in X. laevis embryogenesis and evolved symmetrically.
Collapse
Affiliation(s)
- Edith Tittarelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
- Scuola Universitaria Superiore Pavia - IUSS, Piazza della Vittoria n.15, Pavia, 27100, Italy
| | - Elisa Carotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy.
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| |
Collapse
|
2
|
Castro N, Vilela B, Mata-Sucre Y, Marques A, Gagnon E, Lewis GP, Costa L, Souza G. Repeatome evolution across space and time: Unravelling repeats dynamics in the plant genus Erythrostemon Klotzsch (Leguminosae Juss). Mol Ecol 2024:e17510. [PMID: 39248108 DOI: 10.1111/mec.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024]
Abstract
Fluctuations in genomic repetitive fractions (repeatome) are known to impact several facets of evolution, such as ecological adaptation and speciation processes. Therefore, investigating the divergence of repetitive elements can provide insights into an important evolutionary force. However, it is not clear how the different repetitive element clades are impacted by the different factors such as ecological changes and/or phylogeny. To discuss this, we used the Neotropical legume genus Erythrostemon (Caesalpinioideae) as a model, given its ancient origin (~33 Mya), lineage-specific niche conservatism, macroecological heterogeneity, and disjunct distribution in Meso- and South American (MA and SA respectively) lineages. We performed a comparative repeatomic analysis of 18 Erythrostemon species to test the impact of environmental variables over repeats diversification. Overall, repeatome composition was diverse, with high abundances of satDNAs and Ty3/gypsy-Tekay transposable elements, predominantly in the MA and SA lineages respectively. However, unexpected repeatome profiles unrelated to the phylogeny/biogeography were found in a few MA (E. coccineus, E. pannosus and E. placidus) and SA (E. calycinus) species, related to reticulate evolution and incongruence between nuclear and plastid topology, suggesting ancient hybridizations. The plesiomorphic Tekay and satDNA pattern was altered in the MA-sensu stricto subclade with a striking genomic differentiation (expansion of satDNA and retraction of Tekay) associated with the colonization of a new environment in Central America around 20 Mya. Our data reveal that the current species-specific Tekay pool was the result of two bursts of amplification probably in the Miocene, with distinct patterns for the MA and SA repeatomes. This suggests a strong role of the Tekay elements as modulators of the genome-environment interaction in Erythrostemon, providing macroevolutionary insights about mechanisms of repeatome differentiation and plant diversification across space and time.
Collapse
Affiliation(s)
- Natália Castro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Bruno Vilela
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Gwilym P Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
3
|
Torralba Sáez M, Hofreiter M, Straube N. Shark genome size evolution and its relationship with cellular, life-history, ecological, and diversity traits. Sci Rep 2024; 14:8909. [PMID: 38632352 PMCID: PMC11024215 DOI: 10.1038/s41598-024-59202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Among vertebrates, sharks exhibit both large and heterogeneous genome sizes ranging from 2.86 to 17.05 pg. Aiming for a better understanding of the patterns and causalities of shark genome size evolution, we applied phylogenetic comparative methods to published genome-size estimates for 71 species representing the main phylogenetic lineages, life-histories and ecological traits. The sixfold range of genome size variation was strongly traceable throughout the phylogeny, with a major expansion preceding shark diversification during the late Paleozoic and an ancestral state (6.33 pg) close to the present-day average (6.72 pg). Subsequent deviations from this average occurred at higher rates in squalomorph than in galeomorph sharks and were unconnected to evolutionary changes in the karyotype architecture, which were dominated by descending disploidy events. Genome size was positively correlated with cell and nucleus sizes and negatively with metabolic rate. The metabolic constraints on increasing genome size also manifested at higher phenotypic scales, with large genomes associated with slow lifestyles and purely marine waters. Moreover, large genome sizes were also linked to non-placental reproductive modes, which may entail metabolically less demanding embryological developments. Contrary to ray-finned fishes, large genome size was associated neither with the taxonomic diversity of affected clades nor with low genetic diversity.
Collapse
Affiliation(s)
- Mario Torralba Sáez
- Ichthyology Section, Bavarian State Collection of Zoology (SNSB-ZSM), 81247, Munich, Germany
- Systematic Zoology, Department Biology II, Faculty of Biology, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Nicolas Straube
- Department of Natural History, University Museum Bergen, University of Bergen (UiB), 5007, Bergen, Norway.
| |
Collapse
|
4
|
Talavera A, Palmada-Flores M, Burriel-Carranza B, Valbuena-Ureña E, Mochales-Riaño G, Adams DC, Tejero-Cicuéndez H, Soler-Membrives A, Amat F, Guinart D, Carbonell F, Obon E, Marquès-Bonet T, Carranza S. Genomic insights into the Montseny brook newt ( Calotriton arnoldi), a Critically Endangered glacial relict. iScience 2024; 27:108665. [PMID: 38226169 PMCID: PMC10788218 DOI: 10.1016/j.isci.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The Montseny brook newt (Calotriton arnoldi), considered the most endangered amphibian in Europe, is a relict salamandrid species endemic to a small massif located in northeastern Spain. Although conservation efforts should always be guided by genomic studies, those are yet scarce among urodeles, hampered by the extreme sizes of their genomes. Here, we present the third available genome assembly for the order Caudata, and the first genomic study of the species and its sister taxon, the Pyrenean brook newt (Calotriton asper), combining whole-genome and ddRADseq data. Our results reveal significant demographic oscillations which accurately mirrored Europe's climatic history. Although severe bottlenecks have led to depauperate genomic diversity and long runs of homozygosity along a gigantic genome, inbreeding might have been avoided by assortative mating strategies. Other life history traits, however, seem to have been less advantageous, and the lack of land dispersal has driven to exceptional levels of population fragmentation.
Collapse
Affiliation(s)
- Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Marc Palmada-Flores
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, Pº Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | | | | | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fèlix Amat
- Àrea d’Herpetologia, BiBIO, Museu de Granollers – Ciències Naturals. Palaudàries 102, Granollers, Barcelona, Spain
| | - Daniel Guinart
- Servei de Gestió de Parcs Naturals, Diputació de Barcelona, Spain
| | - Francesc Carbonell
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Elena Obon
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
5
|
Carotti E, Tittarelli E, Canapa A, Biscotti MA, Carducci F, Barucca M. LTR Retroelements and Bird Adaptation to Arid Environments. Int J Mol Sci 2023; 24:ijms24076332. [PMID: 37047324 PMCID: PMC10094322 DOI: 10.3390/ijms24076332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
TEs are known to be among the main drivers in genome evolution, leading to the generation of evolutionary advantages that favor the success of organisms. The aim of this work was to investigate the TE landscape in bird genomes to look for a possible relationship between the amount of specific TE types and environmental changes that characterized the Oligocene era in Australia. Therefore, the mobilome of 29 bird species, belonging to a total of 11 orders, was analyzed. Our results confirmed that LINE retroelements are not predominant in all species of this evolutionary lineage and highlighted an LTR retroelement dominance in species with an Australian-related evolutionary history. The bird LTR retroelement expansion might have happened in response to the Earth’s dramatic climate changes that occurred about 30 Mya, followed by a progressive aridification across most of Australian landmasses. Therefore, in birds, LTR retroelement burst might have represented an evolutionary advantage in the adaptation to arid/drought environments.
Collapse
|
6
|
Transcriptional Contribution of Transposable Elements in Relation to Salinity Conditions in Teleosts and Silencing Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23095215. [PMID: 35563606 PMCID: PMC9101882 DOI: 10.3390/ijms23095215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant marbled eel Anguilla marmorata and the chum salmon Oncorhynchus keta, both diadromous, and the marine medaka Oryzias melastigma, an euryhaline organism sensu stricto. Our analyses revealed an interesting activity of TEs in the case of juvenile eels, commonly adapted to salty water, when exposed to brackish and freshwater conditions. Moreover, the expression assessment of genes involved in TE silencing mechanisms (six in heterochromatin formation, fourteen known to be part of the nucleosome remodeling deacetylase (NuRD) complex, and four of the Argonaute subfamily) unveiled that they are active. Finally, our results evidenced for the first time a krüppel-associated box (KRAB)-like domain specific to actinopterygians that, together with TRIM33, might allow the functioning of NuRD complex also in fish species. The possible interaction between these two proteins was supported by structural prediction analyses.
Collapse
|
7
|
Carducci F, Carotti E, Gerdol M, Greco S, Canapa A, Barucca M, Biscotti MA. Investigation of the activity of transposable elements and genes involved in their silencing in the newt Cynops orientalis, a species with a giant genome. Sci Rep 2021; 11:14743. [PMID: 34285310 PMCID: PMC8292531 DOI: 10.1038/s41598-021-94193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Caudata is an order of amphibians with great variation in genome size, which can reach enormous dimensions in salamanders. In this work, we analysed the activity of transposable elements (TEs) in the transcriptomes obtained from female and male gonads of the Chinese fire-bellied newt, Cynops orientalis, a species with a genome about 12-fold larger than the human genome. We also compared these data with genomes of two basal sarcopterygians, coelacanth and lungfish. In the newt our findings highlighted a major impact of non-LTR retroelements and a greater total TE activity compared to the lungfish Protopterus annectens, an organism also characterized by a giant genome. This difference in TE activity might be due to the presence of young copies in newt in agreement also with the increase in the genome size, an event that occurred independently and later than lungfish. Moreover, the activity of 33 target genes encoding proteins involved in the TE host silencing mechanisms, such as Ago/Piwi and NuRD complex, was evaluated and compared between the three species analysed. These data revealed high transcriptional levels of the target genes in both newt and lungfish and confirmed the activity of NuRD complex genes in adults. Finally, phylogenetic analyses performed on PRDM9 and TRIM28 allowed increasing knowledge about the evolution of these two key genes of the NuRD complex silencing mechanism in vertebrates. Our results confirmed that the gigantism of the newt genomes may be attributed to the activity and accumulation of TEs.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Samuele Greco
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via L. Giorgieri, 5, 34127, Trieste, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
8
|
Weng YM, Francoeur CB, Currie CR, Kavanaugh DH, Schoville SD. A high-quality carabid genome assembly provides insights into beetle genome evolution and cold adaptation. Mol Ecol Resour 2021; 21:2145-2165. [PMID: 33938156 DOI: 10.1111/1755-0998.13409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
The hyperdiverse order Coleoptera comprises a staggering ~25% of known species on Earth. Despite recent breakthroughs in next generation sequencing, there remains a limited representation of beetle diversity in assembled genomes. Most notably, the ground beetle family Carabidae, comprising more than 40,000 described species, has not been studied in a comparative genomics framework using whole genome data. Here we generate a high-quality genome assembly for Nebria riversi, to examine sources of novelty in the genome evolution of beetles, as well as genetic changes associated with specialization to high-elevation alpine habitats. In particular, this genome resource provides a foundation for expanding comparative molecular research into mechanisms of insect cold adaptation. Comparison to other beetles shows a strong signature of genome compaction, with N. riversi possessing a relatively small genome (~147 Mb) compared to other beetles, with associated reductions in repeat element content and intron length. Small genome size is not, however, associated with fewer protein-coding genes, and an analysis of gene family diversity shows significant expansions of genes associated with cellular membranes and membrane transport, as well as protein phosphorylation and muscle filament structure. Finally, our genomic analyses show that these high-elevation beetles have endosymbiotic Spiroplasma, with several metabolic pathways (e.g., propanoate biosynthesis) that might complement N. riversi, although its role as a beneficial symbiont or as a reproductive parasite remains equivocal.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, USA
| | - Charlotte B Francoeur
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - David H Kavanaugh
- Department of Entomology, California Academy of Sciences, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
9
|
Transposable Elements and Teleost Migratory Behaviour. Int J Mol Sci 2021; 22:ijms22020602. [PMID: 33435333 PMCID: PMC7827017 DOI: 10.3390/ijms22020602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and freshwater for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadromous and catadromous species, independently from their phylogenetic position. This aspect is likely due to the substantial environmental changes faced by diadromous species during their migratory routes.
Collapse
|
10
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|