1
|
Vissamsetti N, Simon-Collins M, Lin S, Bandyopadhyay S, Kuriyan R, Sybesma W, Tomé D. Local Sources of Protein in Low- and Middle-Income Countries: How to Improve the Protein Quality? Curr Dev Nutr 2024; 8:102049. [PMID: 38476722 PMCID: PMC10926142 DOI: 10.1016/j.cdnut.2023.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 03/14/2024] Open
Abstract
Protein inadequacy is a major contributor to nutritional deficiencies and adverse health outcomes of populations in low- and middle-income countries (LMICs). People in LMICs often consume a diet predominantly based on staple crops, such as cereals or starches, and derive most of their daily protein intakes from these sources. However, plant-based sources of protein often contain low levels of indispensable amino acids (IAAs). Inadequate intake of IAA in comparison with daily requirements is a limiting factor that results in protein deficiency, consequently in the long-term stunting and wasting. In addition, plant-based sources contain factors such as antinutrients that can diminish protein digestion and absorption. This review describes factors that affect protein quality, reviews dietary patterns of populations in LMICs and discusses traditional and novel small- and large-scale techniques that can improve the quality of plant protein sources for enhanced protein bioavailability and digestibility as an approach to tackle malnutrition in LMICs. The more accessible small-scale food-processing techniques that can be implemented at home in LMICs include soaking, cooking, and germination, whereas many large-scale techniques must be implemented on an industrial level such as autoclaving and extrusion. Limitations and considerations to implement those techniques locally in LMICs are discussed. For instance, at-home processing techniques can cause loss of nutrients and contamination, whereas limitations with larger scale techniques include high energy requirements, costs, and safety considerations. This review suggests that combining these small- and large-scale approaches could improve the quality of local sources of proteins, and thereby address adverse health outcomes, particularly in vulnerable population groups such as children, adolescents, elderly, and pregnant and lactating women.
Collapse
Affiliation(s)
- Nitya Vissamsetti
- Department of Biochemistry and Molecular Biology and Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States
| | - Mackenzie Simon-Collins
- Division of Reproductive Sciences and Women’s Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheryl Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Sulagna Bandyopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | | | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
2
|
Kaur J, Singh B, Singh A, Sharma S, Kidwai MK. Effect of extrusion processing on techno-functional properties, textural properties, antioxidant activities, in vitro nutrient digestibility and glycemic index of sorghum-chickpea-based extruded snacks. J Texture Stud 2023; 54:706-719. [PMID: 37246468 DOI: 10.1111/jtxs.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/30/2023]
Abstract
Physico-chemical, textural, functional, and nutritional properties of the twin screw extruded whole sorghum-chickpea (8:2) snacks was investigated using in vitro procedures. The extruded snacks were analyzed for the effect of variations in extruded conditions on their properties: barrel BT (BT) (130-170°C) and feed moisture (FM) (14%-18%), keeping screw speed constant (400 rpm). The results revealed that specific mechanical energy (SME) decreased (74.4-60.0) in response to rise in both BT and FM, whereas expansion ratio (ER) had shown an alternative relation as it decreased with elevated FM (2.17 at 14%, 130°C to 2.14 at 16%, 130°C) and increased with BT (1.75 at 18%, 130°C to 2.48 at 18%, 170°C). The values of WAI and WSI improved with the surge in BT, which was associated with enhanced disruption of starch granules at higher BT. Raise in FM incremented the total phenolic content (TPC) and hence the antioxidant activity (AA) (FRAP and DPPH) along with the hardness of snacks. As per in vitro starch digestibility is concerned, slowly digestible starch (SDS) content as well as glycemic index (51-53) of the extrudates depressed with increasing BT and FM. Also, lower BT and FM improved the functional properties such as expansion ratio, in-vitro protein digestibility, and overall acceptability of the snacks. A positive correlation was seen among SME and hardness of the snacks, WSI and ER, TPC and AA, SDS and Exp-GI, color and OA, texture and OA.
Collapse
Affiliation(s)
- Jashandeep Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Baljit Singh
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Arashdeep Singh
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Savita Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohd Kashif Kidwai
- Department of Energy & Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
3
|
Shah FUH, Sharif MK, Ahmad Z, Amjad A, Javed MS, Suleman R, Sattar DES, Amir M, Anwar MJ. Nutritional characterization of the extrusion-processed micronutrient-fortified corn snacks enriched with protein and dietary fiber. Front Nutr 2022; 9:1062616. [PMID: 36618676 PMCID: PMC9816565 DOI: 10.3389/fnut.2022.1062616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The current study focused on developing protein- and dietary fiber-enriched, micronutrient-fortified corn snacks using extrusion technology. Corn, soybean, and chickpea flour were used to develop micronutrient-fortified (Fe, Zn, I, and vitamin A, and C) extruded snacks, followed by an exploration of their nutritional traits. Soybean and chickpea were supplemented discretely (20-40/100 g) or in a combination of both (10:10, 15:15, and 20:20/100 g). According to the results, the relative proportion of the raw material composition was reflected in corn snacks' proximate composition and mineral and vitamin levels. Corn snacks with 40/100 g soy flour showed the best nutrient profile, with a maximum percent increase in protein (171.9%) and fiber (106%), as compared to the snacks developed using chickpea and/or mixed supplementation with soy and chickpea. Total dietary fiber (18.44 ± 0.34%), soluble dietary fiber (10.65 ± 0.13%), and insoluble dietary fiber (7.76 ± 0.38%) were also found to be highest in the soy-supplemented snacks (40/100 g). It was discovered that 100 g of corn snacks could provide 115-127% of the RDA for iron, 77-82% of the RDA for zinc, 90-100% of the RDA for vitamin A, and 45-50% of the RDA for vitamin C. The results for the effect of extrusion processing on amino acids showed a 2.55-45.1% reduction in essential amino acids, with cysteine and valine showing the greatest decrease and leucine and tryptophan remaining relatively stable during extrusion.
Collapse
Affiliation(s)
- Faiz-ul-Hassan Shah
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Punjab, Pakistan
| | - Zulfiqar Ahmad
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Adnan Amjad
- Department of Human Nutrition and Dietetics, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Muhammad Sameem Javed
- Department of Food Safety and Quality Management, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Raheel Suleman
- Department of Food Science and Technology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Dur-e-Shahwar Sattar
- Department of Food Science and Technology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Muhammad Amir
- Department of Food Science and Technology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| | - Muhammad Junaid Anwar
- Department of Food Science and Technology, Bahauddin Zakariya University Multan, Multan, Punjab, Pakistan
| |
Collapse
|
4
|
Amer SA, Rizk AE. Production and evaluation of novel functional extruded corn snacks fortified with ginger, bay leaves and turmeric powder. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00083-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Extruded corn snacks are accepted by all human ages especially children, but they have low functional value. Therefore, corn extruded snacks contain rich nutraceuticals dried herbs including Laurus nobilis (T1), Curcuma longa (T2), Zingiber officinale Roscoe (T3), and the mixture of these herbs (T4) were manufactured and analyzed. The results declared that all the herbal extruded corn snacks had significantly higher ash, fibers, minerals, and vitamins A and B6. For minerals, the highest percent of increase compared to control was achieved by Fe, K, Ca, Zn content in order, being the highest in T4. The contents of Vitamin A and B6 were ranged from 283 to 445 IU/100 g and from 0.01 to 0.08 mg/100 g for the herbal extrudates, respectively. The increased percent in herbal corn snacks relative to control ranged from 743 to 452%, 188 to 17.6%, and from 313 to 99% for total phenolics, flavonoids, and antioxidant activity. Besides, the highest number of phenolic compounds was recorded in T4. Despite the fact that approximately all herbal extruded products had good texture and color characteristics, the best formulation was T2 and T4 corn snacks. Furthermore, the extruded products were microbiologically safe for up to 9 months. The formulation of herbal-corn snacks could fulfill consumers’ requirement for ready-to-eat-healthy foods with acceptable sensory attributes and also economically suitable for the food industry.
Graphical abstract
Collapse
|
5
|
El Haddad N, Choukri H, Ghanem ME, Smouni A, Mentag R, Rajendran K, Hejjaoui K, Maalouf F, Kumar S. High-Temperature and Drought Stress Effects on Growth, Yield and Nutritional Quality with Transpiration Response to Vapor Pressure Deficit in Lentil. PLANTS (BASEL, SWITZERLAND) 2021; 11:95. [PMID: 35009098 PMCID: PMC8747359 DOI: 10.3390/plants11010095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
High temperature and water deficit are among the major limitations reducing lentil (Lens culinaris Medik.) yield in many growing regions. In addition, increasing atmospheric vapor pressure deficit (VPD) due to global warming causes a severe challenge by influencing the water balance of the plants, thus also affecting growth and yield. In the present study, we evaluated 20 lentil genotypes under field conditions and controlled environments with the following objectives: (i) to investigate the impact of temperature stress and combined temperature-drought stress on traits related to phenology, grain yield, nutritional quality, and canopy temperature under field conditions, and (ii) to examine the genotypic variability for limited transpiration (TRlim) trait in response to increased VPD under controlled conditions. The field experiment results revealed that high-temperature stress significantly affected all parameters compared to normal conditions. The protein content ranged from 23.4 to 31.9%, while the range of grain zinc and iron content varied from 33.1 to 64.4 and 62.3 to 99.3 mg kg-1, respectively, under normal conditions. The grain protein content, zinc and iron decreased significantly by 15, 14 and 15% under high-temperature stress, respectively. However, the impact was more severe under combined temperature-drought stress with a reduction of 53% in protein content, 18% in zinc and 20% in iron. Grain yield declined significantly by 43% in temperature stress and by 49% in the combined temperature-drought stress. The results from the controlled conditions showed a wide variation in TR among studied lentil genotypes. Nine genotypes displayed TRlim at 2.76 to 3.51 kPa, with the genotypes ILL 7833 and ILL 7835 exhibiting the lowest breakpoint. Genotypes with low breakpoints had the ability to conserve water, allowing it to be used at later stages for increased yield. Our results identified promising genotypes including ILL 7835, ILL 7814 and ILL 4605 (Bakria) that could be of great interest in breeding for high yields, protein and micronutrient contents under high-temperature and drought stress. In addition, it was found that the TRlim trait has the potential to select for increased lentil yields under field water-deficit environments.
Collapse
Affiliation(s)
- Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Michel Edmond Ghanem
- AgroBioSciences (AgBS) Research Division, Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco;
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Centre de Recherche BioBio, Faculté des Sciences, Mohammed V University Rabat, Rabat 10112, Morocco;
| | - Rachid Mentag
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research (INRA), Rabat 10090, Morocco;
| | - Karthika Rajendran
- Vellore Institute of Technology (VIT), VIT School of Agricultural Innovations and Advanced Learning (VAIAL), Vellore 632014, Tamil Nadu, India;
| | - Kamal Hejjaoui
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut 1108 2010, Lebanon;
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco; (H.C.); (K.H.)
| |
Collapse
|
6
|
The replacement of cereals by legumes in extruded snack foods: Science, technology and challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Tyl C, Bresciani A, Marti A. Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks. Foods 2021; 10:foods10092024. [PMID: 34574134 PMCID: PMC8471519 DOI: 10.3390/foods10092024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 12/29/2022] Open
Abstract
The incorporation of milling by-products, in particular bran, into starch-based extruded snacks allows manufacturers to address two consumer demands at once, i.e., those for goods that are more sustainably produced and of higher nutritional value. However, the higher fiber content in bran than in refined cereal flours poses a limit to the amount that can be included without compromising the quality of extruded snacks, which crucially depends on expansion. Thus, several studies have focused on the effect of bran on the physicochemical characteristics of extruded snacks, leading to the need to review the recent findings in this area. Opportunities, challenges, and potential solutions of bran-enriched snacks are addressed, and several current knowledge gaps are highlighted. Specifically, the first part of the review presents the effects of extrusion cooking on bran's compositional aspects, focusing on structural changes and product quality. After summarizing the main quality traits of extruded snacks (e.g., expansion rate, bulk density, and textural attributes), the effects of bran enrichment on the physical and sensory characteristics of the final product are discussed. Finally, bran pre-treatments as well as processing optimization are discussed as approaches to improve the quality of bran-enriched snacks.
Collapse
Affiliation(s)
- Catrin Tyl
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, 1433 Ås, Norway;
| | - Andrea Bresciani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Giovanni Celoria, 2, 20133 Milan, Italy;
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Giovanni Celoria, 2, 20133 Milan, Italy;
- Correspondence:
| |
Collapse
|
8
|
Pasqualone A, Costantini M, Coldea TE, Summo C. Use of Legumes in Extrusion Cooking: A Review. Foods 2020; 9:E958. [PMID: 32698316 PMCID: PMC7404795 DOI: 10.3390/foods9070958] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
The traditional perception that legumes would not be suitable for extrusion cooking is now completely outdated. In recent years, an increasing number of studies have been conducted to assess the behavior of various types of legume flours in extrusion cooking, proving that legumes have excellent potential for the production of extruded ready-to-eat foods by partially or totally replacing cereals. This review identifies the optimal processing conditions for legume-based and legume-added extruded foods, which allow the improvement of the expansion ratio and give the extrudates the spongy and crisp structure expected by consumers. In particular, the effect of the individual processing parameters on the physical-chemical and nutritional properties of the final product is highlighted. The extrusion cooking process, indeed, has a positive effect on nutritional characteristics, because it induces important modifications on starch and proteins, enhancing their digestibility, and reduces the content of trypsin inhibitors, lectins, phytic acid, and tannins, typically present in legumes. Therefore, the extrusion of legume flours is a viable strategy to improve their nutritional features while reducing home preparation time, so as to increase the consumption of these sustainable crops.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.C.); (C.S.)
| | - Michela Costantini
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.C.); (C.S.)
| | - Teodora Emilia Coldea
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.C.); (C.S.)
| |
Collapse
|
9
|
Yoon AK, Rizvi SS. Functional, textural, and sensory properties of milk protein concentrate-based supercritical fluid extrudates made with acid whey. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1753768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ashton K. Yoon
- Department of Food Science & Technology, Cornell University, Ithaca, NY, USA
| | - Syed S.H. Rizvi
- Department of Food Science & Technology, Cornell University, Ithaca, NY, USA
| |
Collapse
|