1
|
Zhu H, Li J, Yuan X, Zhao J, Ma L, Chen F, Hu X, Ji J. Synergistic effects of superfine grinding and high hydrostatic pressure on the contents, distribution, digestive behaviors and antioxidant activities of polyphenols in barley leaves. Food Chem 2024; 452:139574. [PMID: 38733683 DOI: 10.1016/j.foodchem.2024.139574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Barley leaves (BLs) naturally contained abundant phenolics, most of which are hardly completely released from food matrix during gastrointestinal digestion. Superfine grinding (SFG) and high hydrostatic pressure (HHP) are generally used to treat the functional plants due to their effectiveness to cell wall-breaking and improvement of nutraceutical bioavailability. Thus, this study investigated the synergistic effects of SFG and HHP (100, 300, 500 MPa/20 min) on the bioaccessbility of typical phenolics in BLs during the simulated in-vitro digestion. The results demonstrated that the highest bioaccessbility (40.98%) was found in the ultrafine sample with HHP at 500 MPa. CLSM and SEM confirmed SFG led to microstructurally rapture of BLs. Moreover, the recovery index of ABTS radical scavenging activity and FRAP of HHP-treated ultrafine and fine BLs samples maximumly increased by 53.62% and 9.61%, respectively. This study is expecting to provide the theoretical basis to improve the consumer acceptance of BLs.
Collapse
Affiliation(s)
- Huijuan Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiahao Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xin Yuan
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiajia Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Dong L, Li Y, Chen Q, Liu Y, Wu Z, Pan D, Yan N, Liu L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr 2024; 64:9495-9513. [PMID: 37222572 DOI: 10.1080/10408398.2023.2213768] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Álvarez-Romero M, Ruíz-Rodríguez A, Barbero GF, Vázquez-Espinosa M, El-Mansouri F, Brigui J, Palma M. Comparison between Ultrasound- and Microwave-Assisted Extraction Methods to Determine Phenolic Compounds in Barley ( Hordeum vulgare L.). Foods 2023; 12:2638. [PMID: 37509730 PMCID: PMC10378303 DOI: 10.3390/foods12142638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Barley (Hordeum vulgare L.) is one of the major cereal crops worldwide. It is grown not only to be used as fodder but also for human consumption. Barley grains are a great source of phenolic compounds, which are particularly interesting for their health-promoting antioxidant properties, among other benefits. Two extraction methods, namely ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), have been optimized and compared by using Box-Behnken design (BBD) to determine both the antioxidant power and the phenolic compound levels of the extracts. Three variables have been assessed based on these designs: solvent composition (% MeOH in water), temperature (°C), and sample-to-solvent ratio (mg sample mL-1 solvent). The solvent composition used and the interaction between the solvent and the temperature were the most significant variables in terms of recovery of phenolic compounds and antioxidant capacity of the extracts. Short extraction times, a high precision level, and good recoveries have been confirmed for both methods. Moreover, they were successfully applied to several samples. Significant differences regarding the level of phenolic compounds and antioxidant power were revealed when analyzing three different barley varieties. Specifically, the amounts of phenolic compounds ranged from 1.08 to 1.81 mg gallic acid equivalent g-1 barley, while their antioxidant capacity ranged from 1.35 to 2.06 mg Trolox equivalent g-1 barley, depending on the barley variety. Finally, MAE was found to be slightly more efficient than UAE, presenting higher levels of phenolic compounds in the extracts.
Collapse
Affiliation(s)
- María Álvarez-Romero
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Ana Ruíz-Rodríguez
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Gerardo F Barbero
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| | - Fouad El-Mansouri
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tangier BP 416, Morocco
| | - Jamal Brigui
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tangier BP 416, Morocco
| | - Miguel Palma
- Department of Analytical Chemistry, Center of Agri-Food and Wine Research (IVAGRO), Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
4
|
Matłok N, Piechowiak T, Kapusta I, Józefczyk R, Balawejder M. Variability of Properties Modulating the Biosynthesis of Biologically Active Compounds in Young Barley Treated with Ozonated Water. Molecules 2023; 28:5038. [PMID: 37446700 DOI: 10.3390/molecules28135038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This paper presents the effects of irrigating barley plants with different type of water solutions saturated with gaseous ozone generated from atmospheric air. The study investigated the effects of the applied types of water on the modulation of the biosynthesis of selected bioactive compounds (content of total polyphenols, small molecule antioxidants, vitamin C) in the produced plant material. A number of transformations of reactive oxygen species (ROS) and nitrogen compounds have also been postulated; these are observed during the saturation of water with gaseous O3 and 30 min after the end of the process. It was shown that after the process of water saturation with gaseous O3, the gas later is converted to compounds with high oxidative potential and good stability; these, in turn, lead to the oxidation of oxidates generated from atmospheric nitrogen into nitrates, which exhibit fertilising properties. Thirty minutes after the process of H2O saturation with gaseous O3 was completed, the tests showed the highest concentrations of nitrates and the relatively high oxidative potential of the solution originating from H2O2 with a low concentration of the dissolved O3. This solution exhibited the highest activity modulating the biosynthesis of polyphenols, small molecule antioxidants and vitamin C in young barley plants. The resulting differences were significant, and they were reflected by 15% higher total polyphenol content, 35% higher antioxidative potential and 57% greater content of vitamin C compared to the control specimens (plants treated with fresh H2O).
Collapse
Affiliation(s)
- Natalia Matłok
- Department of Food and Agriculture Production Engineering, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszow University, St. Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Radosław Józefczyk
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
5
|
Adetokunboh AH, Obilana AO, Jideani VA. Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract. Molecules 2022; 27:4332. [PMID: 35889203 PMCID: PMC9323462 DOI: 10.3390/molecules27144332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Speciality malts and their extracts have physicochemical characteristics such as colour, flavour, and aroma sorted for in food production. Speciality malts used in food production are mostly produced from cereal grains. Hence, this study aimed to produce speciality malts from Bambara groundnut (BGN) seeds and analyse their physicochemical characteristics and metabolites. The base, toasted, caramel, and roasted malt were produced by drying at different temperatures and times. Syrups were produced isothermally from the speciality malts. The speciality malts and syrups were assessed for colour, pH, protein, α and β-amylases, total polyphenols, antioxidants, and metabolite profiling. The BGN speciality malts were assayed for fatty acid methyl esters (FAME), hydrocarbons, sugar alcohols, sugars, acids, amino acids, and volatile components using capillary gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame ionisation detection (GC-FID). The colours of the speciality malts and syrups were significantly (p = 0.000) different. The protein content of the BGN speciality malts was significantly different (p = 0.000), while the protein content of the syrups was not significantly different. The amylase activities of the BGN speciality malt decreased with the change in kilning temperatures and time. The α- and β-amylase activities for the specialty malts were 1.01, 0.21, 0.29, 0.15 CU/g and 0.11, 0.10, 0.10, 0.06 BU/g. The total polyphenols and antioxidant activities differed for all BGN speciality malts. There were twenty-nine volatiles detected in the BGN speciality malts. Fifteen amino acids consisted of seven essential amino acids, and eight non-essential amino acids were detected in the speciality malts. Fatty acid methyl esters (FAME) identified were palmitoleic, oleic, linolelaidic, linoleic, and arachidic acid. The sugars, organic acids, and sugar alcohols consisted of lactic acid, fructose, sucrose, and myo-inositol. The BGN speciality malts exhibited good physicochemical characteristics and metabolites that can make them useful as household and industrial ingredients for food production, which could be beneficial to consumers.
Collapse
Affiliation(s)
| | | | - Victoria A. Jideani
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (A.H.A.); (A.O.O.)
| |
Collapse
|
6
|
Xie Y, Gong T, Liu H, Fan Z, Zhaojun C, Liu X. In Vitro and In Vivo Digestive Fate and Antioxidant Activities of Polyphenols from Hulless Barley: Impact of Various Thermal Processing Methods and β-Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7683-7694. [PMID: 35708505 DOI: 10.1021/acs.jafc.2c01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The unfavorable bioaccessibility of polyphenols in cereal-based food limits their physiological functions as most polyphenols bind spontaneously to the cell-wall polysaccharides. Effects of β-glucan and various thermal processing methods including flaking and roasting, stir-frying, steam-flash explosion, and popping expansion on the bioaccessibility and antioxidant properties of polyphenols from hulless barley in vitro and in vivo were investigated in this study. The bioaccessibility and antioxidant capacity (via DPPH, ·OH, and ·O2- free radical scavenging, TAC, and FRAP assays) of polyphenol extracts from hulless barley treated by steam-flash explosion and popping expansion increased significantly before and after in vitro digestion compared to those from raw and other processed hulless barley. Further, the total polyphenol content of hulless barley elevated dramatically following hydrolyzing with β-glucanase, which was positively correlated with the antioxidant activity. Additionally, the hulless barley treated with steam-flash explosion exhibited potent antidiabetic effects and antioxidant capacity (via TAC, SOD, GSH-Px, CAT, and MDA assays) in type 2 diabetic rats. The absorption of individual phenolic compounds in the alimentary canal of rats was impacted obviously by thermal processing. This study provides new insights into enhancing the bioaccessibility of the polyphenols and suggests that β-glucans interact with polyphenols and proteins in the hulless barley matrix.
Collapse
Affiliation(s)
- Yong Xie
- School of Food Science, Southwest University, Chongqing 400715, China
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Ting Gong
- Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Haibo Liu
- School of Food Science, Southwest University, Chongqing 400715, China
| | - Zhiping Fan
- Centre for Food and Drug Testing of Yibin City, Yibin 644000, China
| | - Chen Zhaojun
- School of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- School of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Schulz M, Tischer Seraglio SK, Gonzaga LV, Costa ACO, Fett R. Phenolic Compounds in Euterpe Fruits: Composition, Digestibility, and Stability – A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1909060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|