1
|
Aktar A, Bhuia S, Chowdhury R, Hasan R, Islam Rakib A, Al Hasan S, Akter Sonia F, Torequl Islam M. Therapeutic Promises of Bioactive Rosavin: A Comprehensive Review with Mechanistic Insight. Chem Biodivers 2024; 21:e202400286. [PMID: 38752614 DOI: 10.1002/cbdv.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Rosavin is an alkylbenzene diglycoside primarily found in Rhodiola rosea (L.), demonstrating various pharmacological properties in a number of preclinical test systems. This study focuses on evaluating the pharmacological effects of rosavin and the underlying molecular mechanisms based on different preclinical and non-clinical investigations. The findings revealed that rosavin has anti-microbial, antioxidant, and different protective effects, including neuroprotective effects against various neurodegenerative ailments such as mild cognitive disorders, neuropathic pain, depression, and stress, as well as gastroprotective, osteoprotective, pulmoprotective, and hepatoprotective activities. This protective effect of rosavin is due to its capability to diminish inflammation and oxidative stress. The compound also manifested anticancer properties against various cancer via exerting cytotoxicity, apoptotic cell death, arresting the different phases (G0/G1) of the cancerous cell cycle, inhibiting migration, and invading other organs. Rosavin also regulated MAPK/ERK signaling pathways to exert suppressing effect of cancer cell. However, because of its high-water solubility, which lowers its permeability, the phytochemical has low oral bioavailability. The compound's relevant drug likeness was evaluated by the in silico ADME, revealing appropriate drug likeness. We suggest more extensive investigation and clinical studies to determine safety, efficacy, and human dose to establish the compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, 9208, Khulna, Bangladesh
| |
Collapse
|
2
|
Erst AA, Kotsupiy OV, Erst AS, Kuznetsov AA. Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia. Int J Mol Sci 2023; 24:11244. [PMID: 37511004 PMCID: PMC10380078 DOI: 10.3390/ijms241411244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, growth parameters of underground parts and concentrations of phenylpropanoids, phenylethanoids, flavonoids, hydroxybenzoic acids, and catechins in aqueous-ethanol extracts of 6-year-old cultivated plants of Rhodiola rosea (propagated in vitro) of Altai Mountain origin were analyzed, and differences in chemical composition among plant specimens and between plant parts (rhizome and root) were evaluated. High-performance liquid chromatography detected 13 phenolic compounds. Roots contained 1.28 times higher phenylethanoids levels (1273.72 mg/100 g) than rhizomes did. Overall, the concentration of phenylethanoids in underground organs was not high and ranged from 21.36 to 103.00 mg/100 g. High variation among R. rosea individual plants was noted both in growth characteristics and in levels of secondary metabolites under our cultivation conditions. It was found that concentrations of phenylpropanoids, phenylethanoids, and catechins significantly depend on the plant part analyzed (p ≤ 0.05). Specimen No. 4 is characterized by the highest concentration of rosavins (1230.99 mg/plant) and the lowest concentration of cinnamyl alcohol (62.87 mg/plant). Despite the wide range of values, all 10 tested specimens (underground part) met the minimum requirements of the United States Pharmacopeia (2015) for rosavins (0.3%) and of the Russia State Pharmacopoeia (2015) for the average level of rosavins (roots): (1%).
Collapse
Affiliation(s)
- Anna A Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga V Kotsupiy
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | |
Collapse
|
3
|
Han R, Fang H, Fan Z, Ji Y, Schwaneberg U, Ni Y. Coupled reaction of glycosyltransferase and sucrose synthase for high-yielding and cost-effective synthesis of rosin. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Sęczyk Ł, Sugier D, Dervişoğlu G, Özdemir FA, Kołodziej B. Phytochemical profile, in vitro bioaccessibility, and anticancer potential of golden root (Rhodiola rosea L.) extracts. Food Chem 2023; 404:134779. [DOI: 10.1016/j.foodchem.2022.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
|
5
|
Anti-Photoaging Effect of Rhodiola rosea Fermented by Lactobacillus plantarum on UVA-Damaged Fibroblasts. Nutrients 2022; 14:nu14112324. [PMID: 35684124 PMCID: PMC9183149 DOI: 10.3390/nu14112324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/06/2022] Open
Abstract
UVA can cause oxidative stress and photoaging of cells. We established a UVA-induced oxidative stress model of human fibroblasts and focused on the antioxidant and anti-photoaging ability of Lactobacillus plantarum fermented Rhodiola rosea. Compared with the unfermented Rhodiola rosea, Lactobacillus plantarum fermented Rhodiola rosea has better DPPH free radical and hydroxyl free radical scavenging ability, significantly reduces the content of reactive oxygen species (ROS), and improves the antioxidant level. Further studies have shown that the Lactobacillus plantarum fermented Rhodiola rosea can activate the Nrf2/Keap1 signaling pathway and up-regulate heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), catalase (CAT) and glutathione Peptide peroxidase (GSH-Px), and protect fibroblasts from oxidative stress caused by UVA. On the other hand, Lactobacillus plantarum fermented Rhodiola rosea significantly reduces the activity of metalloproteinases in the cell, thereby increasing the collagen and elastin in the cell, alleviating the photoaging caused by UVA. Finally, we concluded that the antioxidant capacity and anti-photoaging ability of Lactobacillus plantarum fermented Rhodiola rosea are better than that of unfermented Rhodiola rosea.
Collapse
|