1
|
Weng JC, Hong CI, Tasi JD, Shen CY, Su PH, Wang SL. The association between prenatal endocrine-disrupting chemical exposure and altered resting-state brain fMRI in teenagers. Brain Struct Funct 2020; 225:1669-1684. [PMID: 32448957 DOI: 10.1007/s00429-020-02089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Many studies have reported that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse behavioral effects or cognitive dysfunction in children. This study aimed to investigate a relationship of the concentration of prenatal EDCs and brain function in teenagers. We recruited 59 mother-child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs, such as heavy metals, phthalates and perfluoroalkyl substances (PFASs), in maternal urine and serum. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected in teenagers 13-16 years of age, and fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) were performed to find the association between maternal EDC concentrations and the functional development of the teenage brain. We found a correlation between MBP concentration and activity in the superior frontal gyrus, middle frontal gyrus, middle temporal gyrus and inferior temporal gyrus in the combined group of boys and girls. We also observed a correlation between MBzP concentration and activity in the anterior cingulum gyrus and insula in girls. We found a correlation between lead concentration and activity in the cuneus in the combined group. We also observed a correlation between MeHg concentration and activity in the superior temporal gyrus, caudate nucleus and putamen in the combined group. The PFOS results revealed a negative relationship between activity in the right putamen in boys, girls and the combined group after phthalate or heavy metals were applied as covariates. The PFNA results showed a negative correlation between activity in the left/right putamen and left caudate nucleus in boys, girls and the combined group after phthalate, heavy metals or PFOS were applied as covariates. We examined the correlations between maternal EDC concentrations and brain development and found that the associations with resting-state teenage brains in some circumstances are sex-related.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chi Ieong Hong
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jeng-Dau Tasi
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Yu Shen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pen-Hua Su
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County 350, Taiwan.
| |
Collapse
|
2
|
Zhang J, Yan C, Wang S, Hou Y, Xue G, Zhang L. Chrysophanol attenuates lead exposure-induced injury to hippocampal neurons in neonatal mice. Neural Regen Res 2014; 9:924-30. [PMID: 25206913 PMCID: PMC4146226 DOI: 10.4103/1673-5374.133141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that chrysophanol protects against learning and memory impairments in lead-exposed adult mice. In the present study, we investigated whether chrysophanol can alleviate learning and memory dysfunction and hippocampal neuronal injury in lead-exposed neonatal mice. At the end of lactation, chrysophanol (0.1, 1.0, 10.0 mg/kg) was administered to the neonatal mice by intraperitoneal injection for 15 days. Chrysophanol significantly alleviated injury to hippocampal neurons and improved learning and memory abilities in the lead-poisoned neonatal mice. Chrysophanol also significantly decreased lead content in blood, brain, heart, spleen, liver and kidney in the lead-exposed neonatal mice. The levels of malondialdehyde in the brain, liver and kidney were significantly reduced, and superoxide dismutase and glutathione peroxidase activities were significantly increased after chrysophanol treatment. Collectively, these findings indicate that chrysophanol can significantly reduce damage to hippocampal neurons in lead-exposed neonatal mice.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chunlin Yan
- Department of Pharmacology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Shu Wang
- Department of Pharmacology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Yong Hou
- Department of Pharmacology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Guiping Xue
- Department of Pharmacology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Li Zhang
- Department of Pharmacology, Hebei North University, Zhangjiakou, Hebei Province, China
| |
Collapse
|
3
|
Senut MC, Sen A, Cingolani P, Shaik A, Land SJ, Ruden DM. Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol Sci 2014; 139:142-61. [PMID: 24519525 DOI: 10.1093/toxsci/kfu028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to lead (Pb) during childhood can result in learning disabilities and behavioral problems. Although described in animal models, whether Pb exposure also alters neuronal differentiation in the developing brains of exposed children is unknown. Here, we investigated the effects of physiologically relevant concentrations of Pb (from 0.4 to 1.9μM) on the capacity of human embryonic stem cells (hESCs) to progress to a neuronal fate. We found that neither acute nor chronic exposure to Pb prevented hESCs from generating neural progenitor cells (NPCs). NPCs derived from hESCs chronically exposed to 1.9μM Pb throughout the neural differentiation process generated 2.5 times more TUJ1-positive neurons than those derived from control hESCs. Pb exposure of hESCs during the stage of neural rosette formation resulted in a significant decrease in the expression levels of the neural marker genes PAX6 and MSI1. Furthermore, the resulting NPCs differentiated into neurons with shorter neurites and less branching than control neurons, as assessed by Sholl analysis. DNA methylation studies of control, acutely treated hESCs and NPCs derived from chronically exposed hESCs using the Illumina HumanMethylation450 BeadChip demonstrated that Pb exposure induced changes in the methylation status of genes involved in neurogenetic signaling pathways. In summary, our study shows that exposure to Pb subtly alters the neuronal differentiation of exposed hESCs and that these changes could be partly mediated by modifications in the DNA methylation status of genes crucial to brain development.
Collapse
Affiliation(s)
- Marie-Claude Senut
- Institute of Environmental Health Sciences, C.S. Mott Center for Human Health and Development, Detroit, Michigan 48201
| | | | | | | | | | | |
Collapse
|
4
|
Meadows-Oliver M. Environmental toxicants: lead and mercury. J Pediatr Health Care 2012; 26:213-5. [PMID: 22445560 DOI: 10.1016/j.pedhc.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 11/25/2022]
|