1
|
Danna J, Lê M, Tallet J, Albaret JM, Chaix Y, Ducrot S, Jover M. Motor Adaptation Deficits in Children with Developmental Coordination Disorder and/or Reading Disorder. CHILDREN (BASEL, SWITZERLAND) 2024; 11:491. [PMID: 38671708 PMCID: PMC11049534 DOI: 10.3390/children11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Procedural learning has been mainly tested through motor sequence learning tasks in children with neurodevelopmental disorders, especially with isolated Developmental Coordination Disorder (DCD) and Reading Disorder (RD). Studies on motor adaptation are scarcer and more controversial. This study aimed to compare the performance of children with isolated and associated DCD and RD in a graphomotor adaptation task. In total, 23 children with RD, 16 children with DCD, 19 children with DCD-RD, and 21 typically developing (TD) children wrote trigrams both in the conventional (from left to right) and opposite (from right to left) writing directions. The results show that movement speed and accuracy were more impacted by the adaptation condition (opposite writing direction) in children with neurodevelopmental disorders than TD children. Our results also reveal that children with RD have less difficulty adapting their movement than children with DCD. Children with DCD-RD had the most difficulty, and analysis of their performance suggests a cumulative effect of the two neurodevelopmental disorders in motor adaptation.
Collapse
Affiliation(s)
- Jérémy Danna
- CLLE, Université de Toulouse, CNRS, 31058 Toulouse, France
| | - Margaux Lê
- Aix-Marseille University, PsyCLE, 13284 Aix-en-Provence, France; (M.L.); (M.J.)
- Aix-Marseille University, CNRS, CRPN, 13015 Marseille, France
| | - Jessica Tallet
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
| | - Jean-Michel Albaret
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
| | - Yves Chaix
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Stéphanie Ducrot
- Aix-Marseille University, CNRS, LPL, 13100 Aix-en-Provence, France;
| | - Marianne Jover
- Aix-Marseille University, PsyCLE, 13284 Aix-en-Provence, France; (M.L.); (M.J.)
| |
Collapse
|
2
|
Van Dyck D, Deconinck N, Aeby A, Baijot S, Coquelet N, De Tiège X, Urbain C. Atypical procedural learning skills in children with Developmental Coordination Disorder. Child Neuropsychol 2023; 29:1245-1267. [PMID: 36458657 DOI: 10.1080/09297049.2022.2152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
We investigated the procedural learning deficit hypothesis in Developmental Coordination Disorder (DCD) while controlling for global performance such as slower reaction times (RTs) and variability. Procedural (sequence) learning was assessed in 31 children with DCD and 31 age-matched typically developing (TD) children through a serial reaction time task (SRTT). Sequential and random trial conditions were intermixed within five training epochs. Two repeated measures ANOVAs were conducted on a Sequence-Specific Learning Index (SSLI) and a Global Performance Index (GPI, speed/accuracy measure) with Epoch (for SSLI and GPI) and Condition (for GPI) as within-subjects factors, and Group as between-subjects factor. Controlling for RTs differences through normalized RTs, revealed a global reduction of SSLI in children with DCD compared with TD peers suggesting reduced sequence learning skills in DCD. Still, a significant Group x Condition interaction observed on GPI indicated that children from both groups were able to discriminate between sequential and random trials. DCD presented reduced procedural learning skills after controlling for global performance. This finding highlights the importance of considering the general functioning of the child while assessing learning skills in patients.
Collapse
Affiliation(s)
- Dorine Van Dyck
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), ULB Neurosciences Institute (UNI), Hôpital Erasme - Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Deconinck
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Simon Baijot
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), ULB Neurosciences Institute (UNI), Hôpital Erasme - Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), ULB Neurosciences Institute (UNI), Hôpital Erasme - Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, Hôpital Erasme - Hôpital Universitaire de Bruxelles (HUB), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Charline Urbain
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), ULB Neurosciences Institute (UNI), Hôpital Erasme - Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Smits-Engelsman B, Coetzee D, Valtr L, Verbecque E. Do Girls Have an Advantage Compared to Boys When Their Motor Skills Are Tested Using the Movement Assessment Battery for Children, 2nd Edition? CHILDREN (BASEL, SWITZERLAND) 2023; 10:1159. [PMID: 37508656 PMCID: PMC10378111 DOI: 10.3390/children10071159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
This study aims to investigate sex-related differences in raw item scores on the Movement Assessment Battery for Children, 2nd Edition (MABC-2) in a large data set collected in different regions across the world, seeking to unravel whether there is an interaction effect between sex and the origin of the sample (European versus African). In this retrospective study, a secondary analysis was performed on anonymized data of 7654 children with a mean age of 8.6 (range 3 to 16; SD: 3.4), 50.0% of whom were boys. Since country-specific norms were not available for all samples, the raw scores per age band (AB) were used for analysis. Our results clearly show that in all age bands sex-related differences are present. In AB1 and AB2, girls score better on most manual dexterity and balance items, but not aiming and catching items, whereas in AB3 the differences seem to diminish. Especially in the European sample, girls outperform boys in manual dexterity and balance items, whereas in the African sample these differences are less marked. In conclusion, separate norms for boys and girls are needed in addition to separate norms for geographical regions.
Collapse
Affiliation(s)
- Bouwien Smits-Engelsman
- Physical Activity, Sport and Recreation, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
- Department of Health & Rehabilitation Sciences, Faculty of Health Sciences, Cape Town University, Cape Town 7701, South Africa
| | - Dané Coetzee
- Physical Activity, Sport and Recreation, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ludvík Valtr
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, 771 11 Olomouc, Czech Republic
| | - Evi Verbecque
- Rehabilitation Research Centre (REVAL), Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A, 3590 Diepenbeek, Belgium
| |
Collapse
|
4
|
Tajari SN, Gholami S, Rostami R, Trabelsi K, Taheri M. The effect of perceptual-motor exercise on temporal dynamics of cognitive inhibition control in children with developmental coordination disorder. Ment Health Phys Act 2023; 24:100495. [DOI: 10.1016/j.mhpa.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Baudou E, Nemmi F, Peran P, Cignetti F, Blais M, Maziero S, Tallet J, Chaix Y. Atypical connectivity in the cortico-striatal network in NF1 children and its relationship with procedural perceptual-motor learning and motor skills. J Neurodev Disord 2022; 14:15. [PMID: 35232382 PMCID: PMC8903485 DOI: 10.1186/s11689-022-09428-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is considered a model of neurodevelopmental disorder because of the high frequency of learning deficits, especially developmental coordination disorder. In neurodevelopmental disorder, Nicolson and Fawcett formulated the hypothesis of an impaired procedural learning system that has its origins in cortico-subcortical circuits. Our aim was to investigate the relationship between cortico-striatal connectivity and procedural perceptual-motor learning performance and motor skills in NF1 children. METHODS Seventeen NF1 and 18 typically developing children aged between 8 and 12 years old participated in the study. All were right-handed and did not present intellectual or attention deficits. In all children, procedural perceptual-motor learning was assessed using a bimanual visuo-spatial serial reaction time task (SRTT) and motor skills using the Movement Assessment Battery for Children (M-ABC). All participants underwent a resting-state functional MRI session. We used a seed-based approach to explore cortico-striatal connectivity in somatomotor and frontoparietal networks. A comparison between the groups' striato-cortical connectivity and correlations between connectivity and learning (SRTT) and motor skills (M-ABC) were performed. RESULTS At the behavioral level, SRTT scores are not significantly different in NF1 children compared to controls. However, M-ABC scores are significantly impaired within 9 patients (scores below the 15th percentile). At the cerebral level, NF1 children present a higher connectivity in the cortico-striatal regions mapping onto the right angular gyrus compared to controls. We found that the higher the connectivity values between these regions, differentiating NF1 and controls, the lower the M-ABC scores in the whole sample. No correlation was found for the SRTT scores. CONCLUSION NF1 children present atypical hyperconnectivity in cortico-striatal connections. The relationship with motor skills could suggest a sensorimotor dysfunction already found in children with developmental coordination disorder. These abnormalities are not linked to procedural perceptual-motor learning assessed by SRTT.
Collapse
Affiliation(s)
- Eloïse Baudou
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France.
- Pediatric Neurology Unit, Hôpital des Enfants, CHU Toulouse, 330 av de Grande Bretagne-TSA, 31059, Toulouse, France.
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Fabien Cignetti
- CNRS, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Melody Blais
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Université Montpellier, IMT Mines Ales, Montpellier, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France
| |
Collapse
|
6
|
Subara-Zukic E, Cole MH, McGuckian TB, Steenbergen B, Green D, Smits-Engelsman BCM, Lust JM, Abdollahipour R, Domellöf E, Deconinck FJA, Blank R, Wilson PH. Behavioral and Neuroimaging Research on Developmental Coordination Disorder (DCD): A Combined Systematic Review and Meta-Analysis of Recent Findings. Front Psychol 2022; 13:809455. [PMID: 35153960 PMCID: PMC8829815 DOI: 10.3389/fpsyg.2022.809455] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023] Open
Abstract
AIM The neurocognitive basis of Developmental Coordination Disorder (DCD; or motor clumsiness) remains an issue of continued debate. This combined systematic review and meta-analysis provides a synthesis of recent experimental studies on the motor control, cognitive, and neural underpinnings of DCD. METHODS The review included all published work conducted since September 2016 and up to April 2021. One-hundred papers with a DCD-Control comparison were included, with 1,374 effect sizes entered into a multi-level meta-analysis. RESULTS The most profound deficits were shown in: voluntary gaze control during movement; cognitive-motor integration; practice-/context-dependent motor learning; internal modeling; more variable movement kinematics/kinetics; larger safety margins when locomoting, and atypical neural structure and function across sensori-motor and prefrontal regions. INTERPRETATION Taken together, these results on DCD suggest fundamental deficits in visual-motor mapping and cognitive-motor integration, and abnormal maturation of motor networks, but also areas of pragmatic compensation for motor control deficits. Implications for current theory, future research, and evidence-based practice are discussed. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier: CRD42020185444.
Collapse
Affiliation(s)
- Emily Subara-Zukic
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael H. Cole
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Thomas B. McGuckian
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Bert Steenbergen
- Department of Pedagogical and Educational Sciences, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Dido Green
- Department of Health Sciences, Brunel University London, London, United Kingdom
- Department of Rehabilitation, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Bouwien CM Smits-Engelsman
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jessica M. Lust
- Department of Pedagogical and Educational Sciences, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Reza Abdollahipour
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | | | - Rainer Blank
- Heidelberg University, Heidelberg, Germany
- Klinik für Kinderneurologie und Sozialpädiatrie, Kinderzentrum Maulbronn gGmbH, Maulbronn, Germany
| | - Peter H. Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Blais M, Jucla M, Maziero S, Albaret JM, Chaix Y, Tallet J. Specific Cues Can Improve Procedural Learning and Retention in Developmental Coordination Disorder and/or Developmental Dyslexia. Front Hum Neurosci 2021; 15:744562. [PMID: 34975432 PMCID: PMC8714931 DOI: 10.3389/fnhum.2021.744562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
The present study investigates procedural learning of motor sequences in children with developmental coordination disorder (DCD) and/or developmental dyslexia (DD), typically-developing children (TD) and healthy adults with a special emphasis on (1) the role of the nature of stimuli and (2) the neuropsychological functions associated to final performance of the sequence. Seventy children and ten adults participated in this study and were separated in five experimental groups: TD, DCD, DD, and DCD + DD children and adults. Procedural learning was assessed with a serial reaction time task (SRTT) that required to tap on a specific key as accurately and quickly as possible when stimuli appeared on the screen. Three types of stimuli were proposed as cues: the classical version of the SRTT with 4 squares aligned horizontally on the screen, giving visuospatial cues (VS cues), and two modified versions, with 4 letters aligned horizontally on the screen (VS + L cues) and letters at the center of the screen (L cues). Reaction times (RT) during the repeated and random blocks allowed assessing three phases of learning: global learning, specific learning and retention of the sequence. Learning was considered as completed when RT evolved significantly in the three phases. Neuropsychological assessment involved, among other functions, memory and attentional functions. Our main result was that learning and retention were not influenced by the available cues in adults whereas learning improved with specific cues in children with or without neurodevelopmental disorders. More precisely, learning was not completed with L cues in children with neurodevelopmental disorders. For children with DD, learning was completed with the VS and VS + L cues whereas for children with DCD (with or without DD), learning was completed with combined VS + L cues. Comorbidity between DD and DCD had no more impact on procedural learning than DCD alone. These results suggest that learning depends on the nature of cues available during practice and that cues allowing learning and retention depend on the type of disorder. Moreover, selective attention was correlated with RT during retention, suggesting that this neuropsychological function is important for procedural learning whatever the available cues.
Collapse
Affiliation(s)
- M. Blais
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alés, Montpellier, France
| | - M. Jucla
- Laboratory of Neuro Psycho Linguistics, University of Toulouse, Toulouse, France
| | - S. Maziero
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- Laboratory of Neuro Psycho Linguistics, University of Toulouse, Toulouse, France
| | - J. -M. Albaret
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
| | - Y. Chaix
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- Children’s Hospital, CHU Purpan, Toulouse, France
| | - J. Tallet
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
| |
Collapse
|
8
|
Lachambre C, Proteau-Lemieux M, Lepage JF, Bussières EL, Lippé S. Attentional and executive functions in children and adolescents with developmental coordination disorder and the influence of comorbid disorders: A systematic review of the literature. PLoS One 2021; 16:e0252043. [PMID: 34086687 PMCID: PMC8177544 DOI: 10.1371/journal.pone.0252043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/10/2021] [Indexed: 01/11/2023] Open
Abstract
Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting primarily motor skills, but attentional and executive impairments are common in affected individuals. Moreover, the presence of neurodevelopmental comorbidities is frequent in this population, which certainly influences the cognitive profile of the children concerned. Previous studies have reported deficits in visuospatial/nonverbal and planning tasks. This systematic review of the literature aims to determine if impairments can be found in other attentional and executive functions as well. The type of cognitive tasks, the tasks’ modality (verbal/nonverbal), and the influence of comorbid disorders on attentional and executive profiles are systematically considered. Forty-one studies were identified through the PubMed/Medline and PsycINFO databases according to pre-established eligibility criteria. The results reveal weaknesses in inhibitory control, working memory, planning, nonverbal fluency, and general executive functioning in children with DCD. The presence of comorbid disorders seemingly contributes to the verbal working memory difficulties findings. This review contributes to a better understanding of the cognitive impairments in DCD and of the needs of children with this disorder, allowing to optimize practitioners’ therapeutic interventions.
Collapse
Affiliation(s)
- Catherine Lachambre
- Department of Psychology, Succursale Centre-Ville, University of Montreal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | | | | | - Eve-Line Bussières
- Department of Psychology, University of Quebec at Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Sarah Lippé
- Department of Psychology, Succursale Centre-Ville, University of Montreal, Montreal, Quebec, Canada
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Blais M, Jucla M, Maziero S, Albaret JM, Chaix Y, Tallet J. The Differential Effects of Auditory and Visual Stimuli on Learning, Retention and Reactivation of a Perceptual-Motor Temporal Sequence in Children With Developmental Coordination Disorder. Front Hum Neurosci 2021; 15:616795. [PMID: 33867955 PMCID: PMC8044544 DOI: 10.3389/fnhum.2021.616795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigates the procedural learning, retention, and reactivation of temporal sensorimotor sequences in children with and without developmental coordination disorder (DCD). Twenty typically-developing (TD) children and 12 children with DCD took part in this study. The children were required to tap on a keyboard, synchronizing with auditory or visual stimuli presented as an isochronous temporal sequence, and practice non-isochronous temporal sequences to memorize them. Immediate and delayed retention of the audio-motor and visuo-motor non-isochronous sequences were tested by removing auditory or visual stimuli immediately after practice and after a delay of 2 h. A reactivation test involved reintroducing the auditory and visual stimuli after the delayed recall. Data were computed via circular analyses to obtain asynchrony, the stability of synchronization and errors (i.e., the number of supplementary taps). Firstly, an overall deficit in synchronization with both auditory and visual isochronous stimuli was observed in DCD children compared to TD children. During practice, further improvements (decrease in asynchrony and increase in stability) were found for the audio-motor non-isochronous sequence compared to the visuo-motor non-isochronous sequence in both TD children and children with DCD. However, a drastic increase in errors occurred in children with DCD during immediate retention as soon as the auditory stimuli were removed. Reintroducing auditory stimuli decreased errors in the audio-motor sequence for children with DCD. Such changes were not seen for the visuo-motor non-isochronous sequence, which was equally learned, retained and reactivated in DCD and TD children. All these results suggest that TD children benefit from both auditory and visual stimuli to memorize the sequence, whereas children with DCD seem to present a deficit in integrating an audio-motor sequence in their memory. The immediate effect of reactivation suggests a specific dependency on auditory information in DCD. Contrary to the audio-motor sequence, the visuo-motor sequence was both learned and retained in children with DCD. This suggests that visual stimuli could be the best information for memorizing a temporal sequence in DCD. All these results are discussed in terms of a specific audio-motor coupling deficit in DCD.
Collapse
Affiliation(s)
- Mélody Blais
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Mélanie Jucla
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Stéphanie Maziero
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Jean-Michel Albaret
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Hôpital des Enfants, Centre Hospitalier Universitaire de Toulouse, CHU Purpan, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
10
|
Lê M, Blais M, Jucla M, Chauveau N, Maziero S, Biotteau M, Albaret JM, Péran P, Chaix Y, Tallet J. Procedural learning and retention of audio-verbal temporal sequence is altered in children with developmental coordination disorder but cortical thickness matters. Dev Sci 2020; 24:e13009. [PMID: 32573893 DOI: 10.1111/desc.13009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
Rhythmic abilities are impaired in developmental coordination disorder (DCD) but learning deficit of procedural skills implying temporal sequence is still unclear. Current contradictory results suggest that procedural learning deficits in DCD highly depend on learning conditions. The present study proposes to test the role of sensory modality of stimulations (visual or auditory) on synchronization, learning, and retention of temporal verbal sequences in children with and without DCD. We postulated a deficit in learning particularly with auditory stimulations, in association with atypical cortical thickness of three regions of interesting: sensorimotor, frontal and parietal regions. Thirty children with and without DCD (a) performed a synchronization task to a regular temporal sequence and (b) practiced and recalled a novel non-regular temporal sequences with auditory and visual modalities. They also had a magnetic resonance imaging to measure their cortical thickness. Results suggested that children with DCD presented a general deficit in synchronization of a regular temporal verbal sequence irrespective of the sensory modality, but a specific deficit in learning and retention of auditory non-regular verbal temporal sequence. Stability of audio-verbal synchronization during practice correlated with cortical thickness of the sensorimotor cortex. For the first time, our results suggest that synchronization deficits in DCD are not limited to manual tasks. This deficit persists despite repeated exposition and practice of an auditory temporal sequence, which suggests a possible alteration in audio-verbal coupling in DCD. On the contrary, control of temporal parameters with visual stimuli seems to be less affected, which opens perspectives for clinical practice.
Collapse
Affiliation(s)
- Margaux Lê
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Mélody Blais
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Mélanie Jucla
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Nicolas Chauveau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Maëlle Biotteau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-Michel Albaret
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Hôpital des Enfants Universitaire de Toulouse, CHU Purpan Toulouse, Midi-Pyrénées, France
| | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
11
|
|
12
|
Neurophysiological Approaches to Understanding Motor Control in DCD: Current Trends and Future Directions. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-00161-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
He JL, Fuelscher I, Enticott PG, Teo WP, Barhoun P, Hyde C. Interhemispheric Cortical Inhibition Is Reduced in Young Adults With Developmental Coordination Disorder. Front Neurol 2018; 9:179. [PMID: 29628909 PMCID: PMC5876243 DOI: 10.3389/fneur.2018.00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction While the etiology of developmental coordination disorder (DCD) is yet to be established, brain-behavior modeling provides a cogent argument that neuropathology may subserve the motor difficulties typical of DCD. We argue that a number of the core behavioral features of the DCD profile (such as poor surround inhibition, compromised motor inhibition, and the presence of mirror movements) are consistent with difficulties regulating inhibition within the primary motor cortex (M1). This study aimed to be the first account of the integrity of cortical inhibition in motor cortices in DCD. Method The sample consisted of eight adults with DCD aged (18–30 years) and 10 aged matched neurotypical controls. Participants received a common battery of single and paired-pulse transcranial magnetic stimulation from which a series of neurophysiological measures classically used to measure intra- [e.g., short-interval cortical inhibition (SICI), long-interval cortical inhibition (LICI), and cortical silent period] and inter hemispheric [e.g., ipsilateral silent period (ISP)] cortical inhibition of the M1 at rest were recorded. Results While no group differences were observed for any measure of intrahemispheric cortical inhibition, individuals with DCD demonstrated significantly reduced interhemispheric cortical inhibition relative to controls, shown by consistently lower ISPratios. Conclusion Our findings are consistent with the view that regulation of cortical inhibition of M1 activity may be atypical in individuals with DCD, indicating differential GABAergic operation. This effect, however, appears to be select to cortical inhibition. Importantly, our data support the notion that reduced interhemispheric M1 cortical inhibition may at least partly explain commonly reported difficulties with bimanual motor control in DCD. The neurochemical implications and limitations of this evidence will be discussed.
Collapse
Affiliation(s)
- Jason L He
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Ian Fuelscher
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter G Enticott
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Wei-Peng Teo
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Pamela Barhoun
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|