1
|
Botha CJ, Ackerman LGJ, Masango MG, Arnot LF. Failure of diplodiatoxin to induce diplodiosis in juvenile goats. ACTA ACUST UNITED AC 2020; 87:e1-e4. [PMID: 32242425 PMCID: PMC7136692 DOI: 10.4102/ojvr.v87i1.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Diplodiosis is an important neuromycotoxicosis of ruminants in South Africa when grazing on harvested maize fields in winter. It is believed to be caused by mycotoxin(s) synthesised by Stenocarpella (Diplodia) maydis. Although several metabolites have been isolated from S. maydis culture material, none of these have been administered to ruminants to reproduce the disease. The objectives of this study were to isolate diplodiatoxin and to administer it to juvenile goats. Diplodiatoxin, considered as a major metabolite, was purified from S. maydis-infected maize cultures (Coligny 2007 isolate). Following intravenous administration of 2 mg and 4 mg diplodiatoxin/kg body weight for five consecutive days to two juvenile goats, no clinical signs reminiscent of diplodiosis were observed. Based on previous experimental results and if diplodiatoxin was the causative compound, the dosage regimen employed was seemingly appropriate to induce diplodiosis. In addition, intraruminal administration of 2 mg/kg diplodiatoxin to one goat for three consecutive days also did not induce clinical signs. It appears as if diplodiatoxin alone is not the causative compound. Other metabolites and/or mixtures of diplodiatoxin and other mycotoxins, when available in sufficient quantities, should also be evaluated.
Collapse
Affiliation(s)
- Christo J Botha
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria.
| | | | | | | |
Collapse
|
2
|
Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Toxicon 2015; 102:14-24. [PMID: 26004494 DOI: 10.1016/j.toxicon.2015.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
Abstract
Diplodiosis, a neuromycotoxicosis of cattle and sheep grazing on mouldy cobs infected by Stenocarpella maydis, is considered the last major veterinary mycotoxicosis for which the causative mycotoxin is still unknown. The current study was aimed at characterizing the cell death observed in mouse neuroblastoma (Neuro-2a), Chinese hamster ovary (CHO-K1) and Madin-Darby bovine kidney (MDBK) cell lines exposed to the S. maydis metabolites (i.e. diplodiatoxin and dipmatol) by investigating the roles of necrosis and apoptosis. Necrosis was investigated using the lactate dehydrogenase (LDH) leakage and propidium iodide (PI) flow cytometry assays and apoptosis was evaluated using the caspase-3/7 and Annexin V flow cytometry assays. In addition, transmission electron microscopy (TEM) was used to correlate the cell death pathways observed in this study with their typical morphologies. Both diplodiatoxin and dipmatol (750 μM) induced necrosis and caspase-dependent apoptosis in Neuro-2a, CHO-K1 and MDBK cells. Ultrastructurally, the two mycotoxins induced mitochondrial damage, cytoplasmic vacuolation and nuclear fragmentation in the three cell lines. These findings have laid a foundation for future studies aimed at elucidating in detail the mechanism of action of the S. maydis metabolites.
Collapse
|
3
|
Masango M, Flett B, Ellis C, Botha C. Stenocarpella maydis and its toxic metabolites: a South African perspective on diplodiosis. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stenocarpella maydis is one of the most prevalent ear and stalk rot pathogens of maize globally, causing reductions of grain quality and yield. Various molecular methods, including polymerase chain reaction (PCR)-based techniques and nucleotide microarrays, have been developed for the identification of S. maydis infestation in maize grain. In addition to diplodiatoxin, new metabolites, namely dipmatol, diplonine and chaetoglobosins K and L, have been isolated from S. maydis infected cultures. S. maydis infected maize is also associated with intoxication in ruminants. Diplodiosis, a nervous disorder of cattle and sheep, results from ingestion of mouldy ears, kernels and maize stubble infected by S. maydis. Although this disease is most common in southern Africa, it has also been reported in Australia, Argentina and Brazil. Diplodiosis is characterised by reluctance of the animals to move, a wide-based stance, incoordination, paralysis and death. Myelin degeneration (status spongiosis) is the only histopathological change observed in affected animals, especially in cases of perinatal mortality. To date, none of the purified S. maydis metabolites has been administered to ruminants in order to reproduce diplodiosis. However, recent studies have focused on investigating the toxicity of the metabolites on cell cultures. Cytotoxicity studies where cultured cells were exposed to the S. maydis metabolites indicated that diplodiatoxin and dipmatol affected the activity of the mitochondrial succinate dehydrogenase enzyme and the overall viability of the cells. More detailed in vitro toxicity studies are still required to elucidate how the currently available S. maydis metabolites influence parameters such as the mechanism of cell death. Development of analytical test methods to quantify and establish the presence and distribution of these mycotoxins in infected maize commodities also needs investigation. It is also critical that the role of S. maydis stalk rot be evaluated as a potential source and cause of diplodiosis.
Collapse
Affiliation(s)
- M.G. Masango
- Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), Private Bag X05, Onderstepoort 0110, Pretoria, South Africa
- Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
| | - B.C. Flett
- Agricultural Research Council-Grain Crops Institute (ARC-GCI), Private Bag X1251, Potchefstroom 2520, South Africa
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - C.E. Ellis
- Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), Private Bag X05, Onderstepoort 0110, Pretoria, South Africa
| | - C.J. Botha
- Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
| |
Collapse
|