1
|
Ichinose P, Miró MV, Viviani P, Herrera JM, Lifschitz A, Virkel G. Exploring precision-cut liver slices for comparative xenobiotic metabolism profiling in swine and cattle. Xenobiotica 2024; 54:279-287. [PMID: 38626291 DOI: 10.1080/00498254.2024.2343905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
In vitro systems are useful tools for unravelling species differences in xenobiotic metabolism.The current work aimed to validate the technique of precision-cut liver slices (PCLS) for comparative studies on xenobiotic metabolism in swine and cattle.PCLS from swine (n = 3) and cattle (n = 3) were produced using a Brendel-VitronTM Tissue Slicer and cultured for 6 h. Tissue viability was preserved throughout the whole culture period.Metabolic viability was evaluated using the anthelmintics albendazole (ABZ) and fenbendazole (FBZ) as model drugs, as well as other substrates of hepatic monooxygenases: benzydamine (BZ) N-oxygenase (FMO-dependent), and the O-dealkylations of 7-ethoxyresorufin (EROD, CYP1A1-dependent) and 7-methoxyresorufin (MROD, CYP1A2-dependent).ABZ S-oxygenation resulted 6-fold (cattle) and 13.6-fold (swine) higher (p = 0.001) compared to FBZ S-oxygenation.Similar BZ N-oxygenation and EROD activities were observed in PCLS cultures from both species. MROD was 2.5-fold higher (p = 0.033) in swine than in cattle. Similarly, ABZ S-oxygenation was 1.7-fold higher (p = 0.0002) in swine than in cattle. Conversely, a 82% higher (p = 0.0003) rate of FBZ S-oxygenation was evidenced in PCLS cultures from cattle compared to those from swine.Overall, this work shows that PCLS cultures are useful to obtain relevant information on species differences in xenobiotic metabolism.
Collapse
Affiliation(s)
- Paula Ichinose
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - María Victoria Miró
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Paula Viviani
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Juan Manuel Herrera
- Facultad de Ciencias Veterinarias, Centro de Investigaciones Biológicas, Laboratorio de Histología y Embriología, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Adrián Lifschitz
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| | - Guillermo Virkel
- Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
| |
Collapse
|
2
|
Golomb BA, Berg BK, Han JH. Susceptibility to radiation adverse effects in veterans with Gulf War illness and healthy civilians. Sci Rep 2024; 14:874. [PMID: 38195674 PMCID: PMC10776672 DOI: 10.1038/s41598-023-50083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
We evaluated whether veterans with Gulf War illness (VGWI) report greater ionizing radiation adverse effects (RadAEs) than controls; whether radiation-sensitivity is tied to reported chemical-sensitivity; and whether environmental exposures are apparent risk factors for reported RadAEs (rRadAEs). 81 participants (41 VGWI, 40 controls) rated exposure to, and rRadAEs from, four radiation types. The relations of RadAE-propensity (defined as the ratio of rRadAEs to summed radiation exposures) to Gulf War illness (GWI) presence and severity, and to reported chemical-sensitivity were assessed. Ordinal logistic regression evaluated exposure prediction of RadAE-propensity in the full sample, in VGWI, and stratified by age and chemical-sensitivity. RadAE-propensity was increased in VGWI (vs. controls) and related to GWI severity (p < 0.01) and chemical-sensitivity (p < 0.01). Past carbon monoxide (CO) exposure emerged as a strong, robust predictor of RadAE-propensity on univariable and multivariable analyses (p < 0.001 on multivariable assessment, without and with adjustment for VGWI case status), retaining significance in age-stratified and chemical-sensitivity-stratified replication analyses. Thus, RadAE-propensity, a newly-described GWI-feature, relates to chemical-sensitivity, and is predicted by CO exposure-both features reported for nonionizing radiation sensitivity, consistent with shared mitochondrial/oxidative toxicity across radiation frequencies. Greater RadAE vulnerability fits an emerging picture of heightened drug/chemical susceptibility in VGWI.
Collapse
Affiliation(s)
- Beatrice Alexandra Golomb
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA.
| | - Brinton Keith Berg
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| | - Jun Hee Han
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| |
Collapse
|
3
|
Váňová N, Múčková L, Kalíšková T, Lochman L, Bzonek P, Švec F. In Vitro Evaluation of Oxidative Stress Induced by Oxime Reactivators of Acetylcholinesterase in HepG2 Cells. Chem Res Toxicol 2023; 36:1912-1920. [PMID: 37950699 PMCID: PMC10731658 DOI: 10.1021/acs.chemrestox.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.
Collapse
Affiliation(s)
- Nela Váňová
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - L’ubica Múčková
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 02, Czechia
| | - Tereza Kalíšková
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - Lukáš Lochman
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - Petr Bzonek
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 02, Czechia
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| |
Collapse
|
4
|
Golomb BA, Han JH. Adverse effect propensity: A new feature of Gulf War illness predicted by environmental exposures. iScience 2023; 26:107363. [PMID: 37554469 PMCID: PMC10405325 DOI: 10.1016/j.isci.2023.107363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
A third of 1990-1 Gulf-deployed personnel developed drug/chemical-induced multisymptom illness, "Gulf War illness" (GWI). Veterans with GWI (VGWI) report increased drug/exposure adverse effects (AEs). Using previously collected data from a case-control study, we evaluated whether the fraction of exposures that engendered AEs ("AE Propensity") is increased in VGWI (it was); whether AE Propensity is related to self-rated "chemical sensitivity" (it did); and whether specific exposures "predicted" AE Propensity (they did). Pesticides and radiation exposure were significant predictors, with copper significantly "protective"-in the total sample (adjusted for GWI-status) and separately in VGWI and controls, on multivariable regression. Mitochondrial impairment and oxidative stress (OS) underlie AEs from many exposures irrespective of nominal specific mechanism. We hypothesize that mitochondrial toxicity and interrelated OS from pesticides and radiation position people on the steep part of the curve of mitochondrial impairment and OS versus symptom/biological disruption, amplifying impact of new exposures. Copper, meanwhile, is involved in critical OS detoxification processes.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun Hee Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Golomb BA, Sanchez Baez R, Schilling JM, Dhanani M, Fannon MJ, Berg BK, Miller BJ, Taub PR, Patel HH. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci Rep 2023; 13:10739. [PMID: 37438460 DOI: 10.1038/s41598-023-35896-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Gulf War illness (GWI) is an important exemplar of environmentally-triggered chronic multisymptom illness, and a potential model for accelerated aging. Inflammation is the main hypothesized mechanism for GWI, with mitochondrial impairment also proposed. No study has directly assessed mitochondrial respiratory chain function (MRCF) on muscle biopsy in veterans with GWI (VGWI). We recruited 42 participants, half VGWI, with biopsy material successfully secured in 36. Impaired MRCF indexed by complex I and II oxidative phosphorylation with glucose as a fuel source (CI&CIIOXPHOS) related significantly or borderline significantly in the predicted direction to 17 of 20 symptoms in the combined sample. Lower CI&CIIOXPHOS significantly predicted GWI severity in the combined sample and in VGWI separately, with or without adjustment for hsCRP. Higher-hsCRP (peripheral inflammation) related strongly to lower-MRCF (particularly fatty acid oxidation (FAO) indices) in VGWI, but not in controls. Despite this, whereas greater MRCF-impairment predicted greater GWI symptoms and severity, greater inflammation did not. Surprisingly, adjusted for MRCF, higher hsCRP significantly predicted lesser symptom severity in VGWI selectively. Findings comport with a hypothesis in which the increased inflammation observed in GWI is driven by FAO-defect-induced mitochondrial apoptosis. In conclusion, impaired mitochondrial function-but not peripheral inflammation-predicts greater GWI symptoms and severity.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA.
| | - Roel Sanchez Baez
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
- San Ysidro Health Center, San Diego, CA, 92114, USA
| | - Jan M Schilling
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Mehul Dhanani
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - McKenzie J Fannon
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Brinton K Berg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Bruce J Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| |
Collapse
|
6
|
Delgado A, Stewart S, Urroz M, Rodríguez A, Borobia AM, Akatbach-Bousaid I, González-Muñoz M, Ramírez E. Characterisation of Drug-Induced Liver Injury in Patients with COVID-19 Detected by a Proactive Pharmacovigilance Program from Laboratory Signals. J Clin Med 2021; 10:4432. [PMID: 34640458 PMCID: PMC8509270 DOI: 10.3390/jcm10194432] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has a wide spectrum of clinical manifestations. An elevation of liver damage markers has been observed in numerous cases, which could be related to the empirical use of potentially hepatotoxic drugs. The aim of this study was to describe the clinical and analytical characteristics and perform a causality analysis from laboratory signals available of drug-induced liver injury (DILI) detected by a proactive pharmacovigilance program in patients hospitalised for COVID-19 at La Paz University Hospital in Madrid (Spain) from 1 March 2020 to 31 December 2020. The updated Roussel Uclaf Causality Assessment Method (RUCAM) was employed to assess DILI causality. A lymphocyte transformation test (LTT) was performed on 10 patients. Ultimately, 160 patients were included. The incidence of DILI (alanine aminotransferase >5, upper limit of normal) was 4.9%; of these, 60% had previous COVID-19 hepatitis, the stay was 8.1 days longer and 98.1% were being treated with more than 5 drugs. The most frequent mechanism was hepatocellular (57.5%), with mild severity (87.5%) and subsequent recovery (88.1%). The most commonly associated drugs were hydroxychloroquine, azithromycin, tocilizumab and ceftriaxone. The highest incidence rate of DILI per 10,000 defined daily doses (DDD) was with remdesivir (992.7/10,000 DDD). Some 80% of the LTTs performed were positive, with a RUCAM score of ≥4. The presence of DILI after COVID-19 was associated with longer hospital stays. An immune mechanism has been demonstrated in a small subset of DILI cases.
Collapse
Affiliation(s)
- Ana Delgado
- Clinical Pharmacology Department, La Paz University Hospital-IdiPAZ, School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (A.D.); (S.S.); (M.U.); (A.R.); (A.M.B.)
| | - Stefan Stewart
- Clinical Pharmacology Department, La Paz University Hospital-IdiPAZ, School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (A.D.); (S.S.); (M.U.); (A.R.); (A.M.B.)
| | - Mikel Urroz
- Clinical Pharmacology Department, La Paz University Hospital-IdiPAZ, School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (A.D.); (S.S.); (M.U.); (A.R.); (A.M.B.)
| | - Amelia Rodríguez
- Clinical Pharmacology Department, La Paz University Hospital-IdiPAZ, School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (A.D.); (S.S.); (M.U.); (A.R.); (A.M.B.)
| | - Alberto M. Borobia
- Clinical Pharmacology Department, La Paz University Hospital-IdiPAZ, School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (A.D.); (S.S.); (M.U.); (A.R.); (A.M.B.)
| | | | | | - Elena Ramírez
- Clinical Pharmacology Department, La Paz University Hospital-IdiPAZ, School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (A.D.); (S.S.); (M.U.); (A.R.); (A.M.B.)
| |
Collapse
|
7
|
Cauli O. Oxidative Stress and Cognitive Alterations Induced by Cancer Chemotherapy Drugs: A Scoping Review. Antioxidants (Basel) 2021; 10:1116. [PMID: 34356349 PMCID: PMC8301189 DOI: 10.3390/antiox10071116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is one of the most deleterious effects of chemotherapy treatment in cancer patients, and this problem sometimes remains even after chemotherapy ends. Common classes of chemotherapy-based regimens such as anthracyclines, taxanes, and platinum derivatives can induce both oxidative stress in the blood and in the brain, and these effects can be reproduced in neuronal and glia cell cultures. In rodent models, both the acute and repeated administration of doxorubicin or adriamycin (anthracyclines) or cisplatin impairs cognitive functions, as shown by their diminished performance in different learning and memory behavioural tasks. Administration of compounds with strong antioxidant effects such as N-acetylcysteine, gamma-glutamyl cysteine ethyl ester, polydatin, caffeic acid phenethyl ester, and 2-mercaptoethane sulfonate sodium (MESNA) counteract both oxidative stress and cognitive alterations induced by chemotherapeutic drugs. These antioxidant molecules provide the scientific basis to design clinical trials in patients with the aim of reducing the oxidative stress and cognitive alterations, among other probable central nervous system changes, elicited by chemotherapy in cancer patients. In particular, N-acetylcysteine and MESNA are currently used in clinical settings and are therefore attracting scientific attention.
Collapse
Affiliation(s)
- Omar Cauli
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain; ; Tel.: +34-96-386-41-82; Fax: +34-96-398-30-35
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
8
|
Ommati MM, Mobasheri A, Heidari R. Drug-induced organ injury in coronavirus disease 2019 pharmacotherapy: Mechanisms and challenges in differential diagnosis and potential protective strategies. J Biochem Mol Toxicol 2021; 35:e22795. [PMID: 33973313 PMCID: PMC8237057 DOI: 10.1002/jbt.22795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
The world is currently facing an unprecedented pandemic caused by a newly recognized and highly pathogenic coronavirus disease 2019 (COVID-19; induced by SARS-CoV-2 virus), which is a severe and ongoing threat to global public health. Since COVID-19 was officially declared a pandemic by the World Health Organization in March 2020, several drug regimens have rapidly undergone clinical trials for the management of COVID-19. However, one of the major issues is drug-induced organ injury, which is a prominent clinical challenge. Unfortunately, most drugs used against COVID-19 are associated with adverse effects in different organs, such as the kidney, heart, and liver. These side effects are dangerous and, in some cases, they can be lethal. More importantly, organ injury is also a clinical manifestation of COVID-19 infection. These adverse reactions are increasingly recognized as outcomes of COVID-19 infection. Therefore, the differential diagnosis of drug-induced adverse effects from COVID-19-induced organ injury is a clinical complication. This review highlights the importance of drug-induced organ injury, its known mechanisms, and the potential therapeutic strategies in COVID-19 pharmacotherapy. We review the potential strategies for the differential diagnosis of drug-induced organ injury. This information can facilitate the development of therapeutic strategies, not only against COVID-19 but also for future outbreaks of other emerging infectious diseases.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life SciencesShanxi Agricultural UniversityTaiguChina
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland
- Department of Regenerative MedicineState Research Institute Centre for Innovative MedicineVilniusLithuania
- Departments of Orthopedics, Rheumatology and Clinical ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Joint SurgerySun Yat‐sen UniversityGuangzhouChina
| | - Reza Heidari
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
9
|
Lawana V, Um SY, Rochet JC, Turesky RJ, Shannahan JH, Cannon JR. Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicol Sci 2021; 173:171-188. [PMID: 31562763 DOI: 10.1093/toxsci/kfz210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are mutagens and potential human carcinogens. Our group and others have demonstrated that HAAs may also produce selective dopaminergic neurotoxicity, potentially relevant to Parkinson's disease (PD). The goal of this study was to elucidate mechanisms of HAA-induced neurotoxicity through examining a translational biochemical weakness of common PD models. Neuromelanin is a pigmented byproduct of dopamine metabolism that has been debated as being both neurotoxic and neuroprotective in PD. Importantly, neuromelanin is known to bind and potentially release dopaminergic neurotoxicants, including HAAs (eg, β-carbolines such as harmane). Binding of other HAA subclasses (ie, aminoimidazoaazarenes) to neuromelanin has not been investigated, nor has a specific role for neuromelanin in mediating HAA-induced neurotoxicity been examined. Thus, we investigated the role of neuromelanin in modulating HAA-induced neurotoxicity. We characterized melanin from Sepia officinalis and synthetic dopamine melanin, proposed neuromelanin analogs with similar biophysical properties. Using a cell-free assay, we demonstrated strong binding of harmane and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to neuromelanin analogs. To increase cellular neuromelanin, we transfected SH-SY5Y neuroblastoma cells with tyrosinase. Relative to controls, tyrosinase-expressing cells exhibited increased neuromelanin levels, cellular HAA uptake, cell toxicity, and oxidative damage. Given that typical cellular and rodent PD models form far lower neuromelanin levels than humans, there is a critical translational weakness in assessing HAA-neurotoxicity. The primary impacts of these results are identification of a potential mechanism by which HAAs accumulate in catecholaminergic neurons and support for the need to conduct neurotoxicity studies in systems forming neuromelanin.
Collapse
Affiliation(s)
- Vivek Lawana
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Robert J Turesky
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| |
Collapse
|
10
|
Ommati MM, Niknahad H, Farshad O, Azarpira N, Heidari R. In Vitro and In Vivo Evidence on the Role of Mitochondrial Impairment as a Mechanism of Lithium-Induced Nephrotoxicity. Biol Trace Elem Res 2021; 199:1908-1918. [PMID: 32712907 DOI: 10.1007/s12011-020-02302-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Lithium is abundantly administered against bipolar disorder. On the other hand, the lithium-induced renal injury is a clinical complication which commonly reveals as drug-induced diabetes insipidus. However, lithium-induced cytotoxicity might also play a role in the adverse effects of this drug on the kidney. There is no clear cellular and molecular mechanism(s) for lithium-induced nephrotoxicity. The current study was designed to assess the effect of lithium on kidney tissue oxidative stress biomarkers and mitochondrial function and its relevance to drug-induced nephrotoxicity and electrolyte imbalance. Rats were treated with lithium (lithium carbonate, 25 and 50 mg/kg/day, i.p., for 28 consecutive days). Kidney mitochondria were also isolated from rats and exposed to increasing concentrations of lithium (0.01-10 mM). Serum and urine biomarkers of kidney injury, kidney tissue markers of oxidative stress, and renal histopathological changes were assessed. Moreover, several mitochondrial indices were monitored. Lithium-induced renal injury revealed a significant increase in urine and serum biomarkers of renal impairment. Lithium caused an increase in the kidney reactive oxygen species (ROS) level and lipid peroxidation (LPO). Renal glutathione (GSH) reservoirs were also depleted, and tissue antioxidant capacity decreased in lithium-treated animals. Significant tissue histopathological changes, including necrosis, Bowman capsule dilation, and interstitial inflammation, were evident in lithium-treated animals. On the other hand, significant alterations in kidney mitochondrial function were detected in lithium-treated groups. These data mention oxidative stress, mitochondrial dysfunction, and cellular energy crisis as the potential primary mechanisms for lithium-induced renal injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 1583; 71345. Roknabad, Karafarin St., Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 1583; 71345. Roknabad, Karafarin St., Shiraz, Fars, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 1583; 71345. Roknabad, Karafarin St., Shiraz, Fars, Iran.
| |
Collapse
|
11
|
Jia L, Wang W, Yan Y, Hu R, Sang J, Zhao W, Wang Y, Wei W, Cui W, Yang G, Lu F, Zheng J, Liu F. General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31182-31194. [PMID: 32584021 DOI: 10.1021/acsami.0c07745] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid self-assembly is pathologically linked to many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). While many inhibitors have been developed individually for specific amyloid proteins, there are a few effective platforms to screen on a large scale general amyloid inhibitors against different amyloid proteins. Herein, we developed a new class of amyloid inhibitor probes by site-specific conjugation of aggregation-induced emission (AIE) molecules with amyloid proteins (i.e., AIE@amyloid probes) to realize a high-throughput screening of small-molecule inhibitors. Optimization of site-specific AIE conjugation with two amyloid proteins, amyloid-β protein (Aβ) and α-synuclein (αSN), enabled us to retain their high amyloidogenic properties; i.e., AIE-amyloid probes alone exhibited strong fluorescence due to amyloid-like aggregation, but they showed no fluorescence in the presence of amyloid inhibitors to prevent amyloid aggregation. From integration of AIE@amyloid probes and computational virtual screening from a large drug database, it was found that tolcapone possessed a dual inhibition against the aggregation and cytotoxicity of both Aβ and αSN. More importantly, tolcapone significantly improved the spatial cognition and recognition of Aβ-treated mice. This work represents an innovative attempt to design an AIE-based anti-amyloid drug platform for identifying new small-molecule inhibitors against amyloidogenesis in both AD and PD or other amyloid diseases.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjuan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yushan Yan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Rui Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingcheng Sang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Therapeutic effect of N-acetylcysteine on chemotherapy-induced liver injury. Ir J Med Sci 2020; 189:1189-1194. [PMID: 32239424 DOI: 10.1007/s11845-020-02219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) may be useful in the management of chemotherapy-induced liver injury. AIMS The present study evaluates the possible therapeutic effects of NAC on chemotherapy-induced hepatotoxicity. METHODS A total of 102 patients' files who were diagnosed with cancer between 2015 and 2019 were evaluated retrospectively. Two patient groups with and without NAC were selected. NAC was administered in a 3-μg/kg IV dose in a 24-h infusion to 70 patients when any alanine aminotransferase (ALT) or gamma-glutamyl transferase (GGT) values reached three times the normal levels. The other group consisted of 32 patients who were not treated with NAC. Alanine aminotransferase and GGT values were recorded at pretreatment, and on the 1st, 3rd, 5th, and 7th days in both the NAC and non-NAC groups from files. RESULTS In the NAC group, ALT and GGT values on day 1, 3, 5, and 7 differed from each other, decreasing from day 1 to day 7. A statistically significant difference was noted between the values in the NAC group (p < 0.001). In the non-NAC group, the ALT values on day 7 were lower than the ALT values on day 1. A comparison of the ALT and GGT values in the NAC and non-NAC groups found that the values in the NAC group decreased earlier than in the non-NAC group. CONCLUSIONS This study shows that NAC has a therapeutic effect on hepatotoxicity in children being treated with chemotherapeutic agents due to underlying malign diseases. The early reduction in the results of liver function tests is important for the continuation of chemotherapy.
Collapse
|
13
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
14
|
Emadi E, Abdoli N, Ghanbarinejad V, Mohammadi HR, Mousavi Mobarakeh K, Azarpira N, Mahboubi Z, Niknahad H, Heidari R. The potential role of mitochondrial impairment in the pathogenesis of imatinib-induced renal injury. Heliyon 2019; 5:e01996. [PMID: 31294126 PMCID: PMC6595238 DOI: 10.1016/j.heliyon.2019.e01996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Imatinib is a tyrosine kinase inhibitor widely administered against chronic myeloid leukemia. On the other hand, drug-induced kidney proximal tubular injury, electrolytes disturbances, and renal failure is a clinical complication associated with imatinib therapy. There is no precise cellular mechanism(s) for imatinib-induced renal injury. The current investigation aimed to evaluate the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of imatinib nephrotoxicity. Rats received imatinib (50 and 100 mg/kg, oral, 14 consecutive days). Serum and urine biomarkers of renal injury and markers of oxidative stress in the kidney tissue were assessed. Moreover, kidney mitochondria were isolated, and mitochondrial indices, including mitochondrial depolarization, dehydrogenases activity, mitochondrial permeabilization, lipid peroxidation (LPO), mitochondrial glutathione levels, and ATP content were determined. A significant increase in serum (Creatinine; Cr and blood urea nitrogen; BUN) and urine (Glucose, protein, gamma-glutamyl transferase; γ-GT, and alkaline phosphatase; ALP) biomarkers of renal injury, as well as serum electrolytes disturbances (hypokalemia and hypophosphatemia), were evident in imatinib-treated animals. On the other hand, imatinib (100 mg/kg) caused an increase in kidney ROS and LPO. Renal tubular interstitial nephritis, tissue necrosis, and atrophy were evident as tissue histopathological changes in imatinib-treated rats. Mitochondrial parameters were also adversely affected by imatinib administration. These data represent mitochondrial impairment, renal tissue energy crisis, and oxidative stress as possible mechanisms involved in the pathogenesis of imatinib-induced renal injury and serum electrolytes disturbances.
Collapse
Affiliation(s)
- Ehsan Emadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Vahid Ghanbarinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi Mobarakeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mahboubi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Jarrar QB, Hakim MN, Cheema MS, Zakaria ZA. Comparative ultrastructural hepatic alterations induced by free and liposome-encapsulated mefenamic acid. Ultrastruct Pathol 2017; 41:335-345. [DOI: 10.1080/01913123.2017.1349850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qais Bashir Jarrar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Muhammad Nazrul Hakim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Viviani P, Lifschitz AL, García JP, Maté ML, Quiroga MA, Lanusse CE, Virkel GL. Assessment of liver slices for research on metabolic drug–drug interactions in cattle. Xenobiotica 2017; 47:933-942. [DOI: 10.1080/00498254.2016.1246782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paula Viviani
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Adrián L. Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Jorge P. García
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - María Laura Maté
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Miguel A. Quiroga
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Carlos E. Lanusse
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| | - Guillermo L. Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CIC-UNCPBA), Tandil, Argentina
| |
Collapse
|
17
|
Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol 2016; 30:13-37. [PMID: 27617882 PMCID: PMC5241708 DOI: 10.1021/acs.chemrestox.6b00256] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
18
|
Teppner M, Boess F, Ernst B, Pähler A. Biomarkers of Flutamide-Bioactivation and Oxidative Stress In Vitro and In Vivo. Drug Metab Dispos 2016; 44:560-9. [PMID: 26817949 DOI: 10.1124/dmd.115.066522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/06/2016] [Indexed: 02/13/2025] Open
Abstract
The nonsteroidal androgen-receptor antagonist flutamide is associated with hepatic injury. Oxidative stress and reactive metabolite formation are considered contributing factors to liver toxicity. Here we have used flutamide as a model drug to study the generation of reactive drug metabolites that undergo redox cycling to induce oxidative stress (OS) in vitro and in vivo. Lipid peroxidation (LPO) markers, as well as genes regulated by the redox-sensitive Nrf2 pathway, have been identified as surrogates for the characterization of OS. These markers and metabolism biomarkers for drug bioactivation have been investigated to characterize drug-induced hepatic damage. Rat hepatocytes and in vivo studies showed that several LPO markers, namely the isoprostanes 15R-PD2, dihydro keto PE2, and iPF(2α)-VI, as well as hydroxynonenal mercapturic acid metabolites, had increased significantly by 24 hours after flutamide treatment from 4.9 to 15.3-fold in hepatocytes and from 2.6 to 31.0-fold in rat plasma. Induction of mRNA expression levels for Nrf2-regulated genes was evident as well, with heme oxygenase 1, glutathione-S-transferase π1 and NAD(P)H dehydrogenase showing a 3.6-, 4.1-, and 1.9-fold increase in hepatocytes and 5.6-, 7.5-, and 94.1-fold in rat liver. All effects were observed at drug concentrations that did not show overt liver toxicity. Addition of an in situ hydrogen peroxide-generating system to in vitro experiments demonstrated the formation of a reactive di-imine intermediate as the responsible metabolic pathway for the generation of OS. The dataset suggests that hepatic oxidative stress conditions can be mediated via metabolic activation and can be monitored with suitable biomarkers preceding the terminal damage.
Collapse
Affiliation(s)
- Marieke Teppner
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Franziska Boess
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Beat Ernst
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Pähler
- Roche Pharmaceutical Research and Early Development pRED, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
19
|
Teppner M, Böss F, Ernst B, Pähler A. Application of lipid peroxidation products as biomarkers for flutamide-induced oxidative stress in vitro. Toxicol Lett 2015; 238:53-9. [DOI: 10.1016/j.toxlet.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022]
|
20
|
Flutamide-induced cytotoxicity and oxidative stress in an in vitro rat hepatocyte system. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:398285. [PMID: 25371773 PMCID: PMC4211152 DOI: 10.1155/2014/398285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/01/2014] [Accepted: 09/20/2014] [Indexed: 11/17/2022]
Abstract
Flutamide (FLU) is a competitive antagonist of the androgen receptor which has been reported to induce severe liver injury in some patients. Several experimental models suggested that an episode of inflammation during drug treatment predisposes animals to tissue injury. The molecular cytotoxic mechanisms of FLU in isolated rat hepatocytes using an in vitro oxidative stress inflammation system were investigated in this study. When a nontoxic hydrogen peroxide (H2O2) generating system (glucose/glucose oxidase) with peroxidase or iron(II) [Fe(II)] (to partly simulate in vivo inflammation) was added to the hepatocytes prior to the addition of FLU, increases in FLU-induced cytotoxicity and lipid peroxidation (LPO) were observed that were decreased by 6-N-propyl-2-thiouracil or deferoxamine, respectively. N-Acetylcysteine decreased FLU-induced cytotoxicity in this system. Potent antioxidants, for example, Trolox ((±)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), resveratrol (3,5,4′-trihydroxy-trans-stilbene), and DPPD (N,N′-diphenyl-1,4-phenylenediamine) also significantly decreased FLU-induced cytotoxicity and LPO and increased mitochondrial membrane potential (MMP) and glutathione (GSH) levels in the H2O2 generating system with peroxidase. TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl), a known reactive oxygen species (ROS) scavenger and superoxide dismutase mimetic, also significantly decreased toxicity caused by FLU in this system. These results raise the possibility that the presence or absence of inflammation may be another susceptibility factor for drug-induced hepatotoxicity.
Collapse
|
21
|
Hsieh CC, Hsieh SC, Chiu JH, Wu YL. Protective Effects of N-acetylcysteine and a Prostaglandin E1 Analog, Alprostadil, Against Hepatic Ischemia: Reperfusion Injury in Rats. J Tradit Complement Med 2014; 4:64-71. [PMID: 24872935 PMCID: PMC4032844 DOI: 10.4103/2225-4110.124351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia–reperfusion (I/R) injury has a complex pathophysiology resulting from a number of contributing factors. Therefore, it is difficult to achieve effective treatment or protection by individually targeting the mediators or mechanisms. Our aim was to analyze the individual and combined effects of N-acetylcysteine (NAC) and the prostaglandin E1 (PGE1) analog alprostadil on hepatic I/R injury in rats. Thirty male Sprague-Dawley rats were randomly divided into five groups (six rats per group) as follows: Control group, I/R group, I/R + NAC group, I/R + alprostadil group, and I/R + NAC + alprostadil group. The rats received injections of NAC (150 mg/kg) and/or alprostadil (0.05 μg/kg) over a period of 30 min prior to ischemia. These rats were then subjected to 60 min of hepatic ischemia followed by a 60-min reperfusion period. Hepatic superoxide dismutase (SOD), catalase, and glutathione levels were significantly decreased as a result of I/R injury, but they were increased in groups treated with NAC. Hepatic malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) activities were significantly increased after I/R injury, but they were decreased in the groups with NAC treatment. Alprostadil decreased NO production, but had no effect on MDA and MPO. Histological results showed that both NAC and alprostadil were effective in improving liver tissue morphology during I/R injury. Although NAC and alprostadil did not have a synergistic effect, our findings suggest that treatment with either NAC or alprostadil has benefits for ameliorating hepatic I/R injury.
Collapse
Affiliation(s)
- Cheng-Chu Hsieh
- Department and Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan. ; Biologics Division, Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei, Taiwan
| | - Shu-Chen Hsieh
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jen-Hwey Chiu
- Division of General Surgery, Department of Surgery, Veterans General Hospital, Taipei, Taiwan. ; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Ling Wu
- Department and Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Zhang X, Li C, Gong Z. Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PLoS One 2014; 9:e91874. [PMID: 24626481 PMCID: PMC3953600 DOI: 10.1371/journal.pone.0091874] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/16/2014] [Indexed: 01/28/2023] Open
Abstract
Previously we have developed a transgenic zebrafish line (LiPan) with liver-specific red fluorescent protein (DsRed) expression under the fabp10a promoter. Since red fluorescence in the liver greatly facilitates the observation of liver in live LiPan fry, we envision that the LiPan zebrafish may provide a useful tool in analyses of hepatotoxicity based on changes of liver red fluorescence intensity and size. In this study, we first tested four well-established hepatotoxins (acetaminophen, aspirin, isoniazid and phenylbutazone) in LiPan fry and demonstrated that these hepatotoxins could significantly reduce both liver red fluorescence and liver size in a dosage-dependent manner, thus the two measurable parameters could be used as indicators of hepatotoxicity. We then tested the LiPan fry with nine other chemicals including environmental toxicants and human drugs. Three (mefenamic acid, lindane, and arsenate) behave like hepatotoxins in reduction of liver red fluorescence, while three others (17β-estradiol, TCDD [2,3,7,8-tetrachlorodibenzo-p-dioxin] and NDMA [N-nitrosodimethylamine]) caused increase of liver red fluorescence and the liver size. Ethanol and two other chemicals, amoxicillin (antibiotics) and chlorphenamine (pain killer) did not resulted in significant changes of liver red fluorescence and liver size. By quantitative RT-PCR analysis, we found that the changes of red fluorescence intensity caused by different chemicals correlated to the changes of endogenous fabp10a RNA expression, indicating that the measured hepatotoxicity was related to fatty acid transportation and metabolism. Finally we tested a mixture of four hepatotoxins and observed a significant reduction of red fluorescence in the liver at concentrations below the lowest effective concentrations of individual hepatotoxins, suggesting that the transgenic zebrafish assay is capable of reporting compound hepatotoxicity effect from chemical mixtures. Thus, the LiPan transgenic fry provide a rapid and convenient in vivo hepatotoxicity assay that should be applicable to high-throughput hepatotoxicity test in drug screening as well as in biomonitoring environmental toxicants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Caixia Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Boerma JS, Vermeulen NP, Commandeur JN. One-electron oxidation of diclofenac by human cytochrome P450s as a potential bioactivation mechanism for formation of 2′-(glutathion-S-yl)-deschloro-diclofenac. Chem Biol Interact 2014; 207:32-40. [DOI: 10.1016/j.cbi.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 01/12/2023]
|
24
|
Ramm S, Mally A. Role of drug-independent stress factors in liver injury associated with diclofenac intake. Toxicology 2013; 312:83-96. [PMID: 23939143 DOI: 10.1016/j.tox.2013.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
Abstract
Although a basic understanding of the chemical and biological events leading to idiosyncratic drug toxicity is still lacking, it appears that drug-independent risk factors that increase reactive metabolite formation or alter cellular stress and immune response may be critical determinants in the response to an otherwise non-toxic drug. Thus, we were interested to determine the impact of various drug-independent stress factors - lipopolysaccharide (LPS), poly I:C (PIC) or glutathione depletion via buthionine sulfoximine (BSO) - on the toxicity of diclofenac (Dcl), a model drug associated with rare but significant cases of serious hepatotoxicity, and to understand if enhanced toxicity occurs through alterations of drug metabolism and/or modulation of stress response pathways. Co-treatment of rats repeatedly given therapeutic doses of Dcl for 7 days with a single dose of LPS 2h before the last Dcl dose resulted in severe liver toxicity. Neither LPS nor diclofenac alone or in combination with PIC or BSO had such an effect. While it is thought that bioactivation to reactive Dcl acyl glucuronides (AG) and subsequent protein adduct formation contribute to Dcl induced liver injury, LC-MS/MS analyses did not reveal increased formation of 4'- and 5-hydroxy-Dcl, Dcl-AG or Dcl-AG dependent protein adducts in animals treated with LPS/Dcl. Hepatic gene expression analysis suggested enhanced activation of NFκB and MAPK pathways and up-regulation of co-stimulatory molecules (IL-1β, TNF-α, CINC-1) by LPS/Dcl and PIC/Dcl, while protective factors (HSPs, SOD2) were down-regulated. LPS/Dcl led to extensive release of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, TNF-α) and factors thought to constitute danger signals (HMGB1, CINC-1) into plasma. Taken together, our results show that Dcl enhanced the inflammatory response induced by LPS - and to a lesser extent by PIC - through up-regulation of pro-inflammatory molecules and down-regulation of protective factors. This suggests sensitization of cells to cellular stress mediated by non-drug-related risk factors by therapeutic doses of Dcl, rather than potentiation of Dcl toxicity by the stress factors.
Collapse
Affiliation(s)
- Susanne Ramm
- Department of Toxicology, University of Würzburg, Germany
| | | |
Collapse
|
25
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 968] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
26
|
Hadi M, Westra IM, Starokozhko V, Dragovic S, Merema MT, Groothuis GMM. Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem Res Toxicol 2013; 26:710-20. [PMID: 23565644 DOI: 10.1021/tx300519p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a major problem during drug development and has caused drug withdrawal and black-box warnings. Because of the low concordance of the hepatotoxicity of drugs in animals and humans, robust screening methods using human tissue are needed to predict IDILI in humans. According to the inflammatory stress hypothesis, the effects of inflammation interact with the effects of a drug or its reactive metabolite, precipitating toxic reactions in the liver. As a follow-up to our recently published mouse precision-cut liver slices model, an ex vivo model involving human precision-cut liver slices (hPCLS), co-incubated for 24 h with IDILI-related drugs and lipopolysaccharide (LPS), was developed to study IDILI mechanisms related to inflammatory stress in humans and to detect potential biomarkers. LPS exacerbated the effects of ketoconazole and clozapine toxicity but not those of their non-IDILI-related comparators, voriconazole and olanzapine. However, the IDILI-related drugs diclofenac, carbamazepine, and troglitazone did not show synergistic toxicity with LPS after incubation for 24 h. Co-incubation of ketoconazole and clozapine with LPS decreased the levels of glutathione in hPCLS, but this was not seen for the other drugs. All drugs affected LPS-induced cytokine release, but interestingly, only ketoconazole and clozapine increased the level of LPS-induced TNF release. Decreased levels of glutathione and cysteine conjugates of clozapine were detected in IDILI-responding livers following cotreatment with LPS. In conclusion, we identified ketoconazole and clozapine as drugs that exhibited synergistic toxicity with LPS, while glutathione and TNF were found to be potential biomarkers for IDILI-inducing drugs mediated by inflammatory stress. hPCLS appear to be suitable for further unraveling the mechanisms of inflammatory stress-associated IDILI.
Collapse
Affiliation(s)
- Mackenzie Hadi
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen , Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Kostadinova R, Boess F, Applegate D, Suter L, Weiser T, Singer T, Naughton B, Roth A. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol 2013; 268:1-16. [PMID: 23352505 DOI: 10.1016/j.taap.2013.01.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/22/2012] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects.
Collapse
|
28
|
Heidari R, Babaei H, Eghbal M. Mechanisms of methimazole cytotoxicity in isolated rat hepatocytes. Drug Chem Toxicol 2012; 36:403-11. [DOI: 10.3109/01480545.2012.749272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Xie C, Zhong D, Chen X. Identification of the ortho-benzoquinone intermediate of 5-O-caffeoylquinic acid in vitro and in vivo: comparison of bioactivation under normal and pathological situations. Drug Metab Dispos 2012; 40:1628-40. [PMID: 22551521 DOI: 10.1124/dmd.112.045641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
5-O-Caffeoylquinic acid (5-CQA) is one of the major bioactive ingredients in some Chinese herbal injections. Occasional anaphylaxis has been reported for these injections during their clinical use, possibly caused by reactive metabolites of 5-CQA. This study aimed at characterizing the bioactivation pathway(s) of 5-CQA and the metabolic enzyme(s) involved. After incubating 5-CQA with GSH and NADPH-supplemented human liver microsomes, two types of GSH conjugates were characterized: one was M1-1 from the 1,4-addition of GSH to ortho-benzoquinone intermediate; the other was M2-1 and M2-2 from the 1,4-addition of GSH directly to the α,β-unsaturated carbonyl group of the parent. The formation of M1-1 was cytochrome P450 (P450)-mediated, with 3A4 and 2E1 as the principal catalyzing enzymes, whereas the formation of M2-1 and M2-2 was independent of NADPH and could be accelerated by cytosolic glutathione transferase. In the presence of cumene hydroperoxide, M1-1 formation increased 6-fold, indicating that 5-CQA can also be bioactivated by P450 peroxidase under oxidizing conditions. Furthermore, M1-1 could be formed by myeloperoxidase in activated human leukocytes, implying that 5-CQA bioactivation is more likely to occur under inflammatory conditions. This finding was supported by experiments on lipopolysaccharide-induced inflammatory rats, where a greater amount of M1-1 was detected. In S-adenosyl methionine- and GSH-supplemented human S9 incubations, M1-1 formation decreased by 80% but increased after tolcapone-inhibited catechol-O-methyltransferase (COMT) activity. In summary, the high reactivities of the ortho-benzoquinone metabolite and α,β-unsaturated carbonyl group of 5-CQA to nucleophiles have been demonstrated. Different pathological situations and COMT activities in patients may alter the bioactivation extent of 5-CQA.
Collapse
Affiliation(s)
- Cen Xie
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | |
Collapse
|
30
|
Wang D, Curtis A, Papp AC, Koletar SL, Para MF. Polymorphism in glutamate cysteine ligase catalytic subunit (GCLC) is associated with sulfamethoxazole-induced hypersensitivity in HIV/AIDS patients. BMC Med Genomics 2012; 5:32. [PMID: 22824134 PMCID: PMC3418550 DOI: 10.1186/1755-8794-5-32] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/23/2012] [Indexed: 12/12/2022] Open
Abstract
Background Sulfamethoxazole (SMX) is a commonly used antibiotic for prevention of infectious diseases associated with HIV/AIDS and immune-compromised states. SMX-induced hypersensitivity is an idiosyncratic cutaneous drug reaction with genetic components. Here, we tested association of candidate genes involved in SMX bioactivation and antioxidant defense with SMX-induced hypersensitivity. Results Seventy seven single nucleotide polymorphisms (SNPs) from 14 candidate genes were genotyped and assessed for association with SMX-induced hypersensitivity, in a cohort of 171 HIV/AIDS patients. SNP rs761142 T > G, in glutamate cysteine ligase catalytic subunit (GCLC), was significantly associated with SMX-induced hypersensitivity, with an adjusted p value of 0.045. This result was replicated in a second cohort of 249 patients (p = 0.025). In the combined cohort, heterozygous and homozygous carriers of the minor G allele were at increased risk of developing hypersensitivity (GT vs TT, odds ratio = 2.2, 95% CL 1.4-3.7, p = 0.0014; GG vs TT, odds ratio = 3.3, 95% CL 1.6 – 6.8, p = 0.0010). Each minor allele copy increased risk of developing hypersensitivity 1.9 fold (95% CL 1.4 – 2.6, p = 0.00012). Moreover, in 91 human livers and 84 B-lymphocytes samples, SNP rs761142 homozygous G allele carriers expressed significantly less GCLC mRNA than homozygous TT carriers (p < 0.05). Conclusions rs761142 in GCLC was found to be associated with reduced GCLC mRNA expression and with SMX-induced hypersensitivity in HIV/AIDS patients. Catalyzing a critical step in glutathione biosynthesis, GCLC may play a broad role in idiosyncratic drug reactions.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacology, Program in Pharmacogenomics, School of Biomedical Science, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
31
|
Pereira CV, Nadanaciva S, Oliveira PJ, Will Y. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol 2012; 8:219-37. [PMID: 22248238 DOI: 10.1517/17425255.2012.645536] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Nowadays the 'redox hypothesis' is based on the fact that thiol/disulfide couples such as glutathione (GSH/GSSG), cysteine (Cys/CySS) and thioredoxin ((Trx-(SH)2/Trx-SS)) are functionally organized in redox circuits controlled by glutathione pools, thioredoxins and other control nodes, and they are not in equilibrium relative to each other. Although ROS can be important intermediates of cellular signaling pathways, disturbances in the normal cellular redox can result in widespread damage to several cell components. Moreover, oxidative stress has been linked to a variety of age-related diseases. In recent years, oxidative stress has also been identified to contribute to drug-induced liver, heart, renal and brain toxicity. AREAS COVERED This review provides an overview of current in vitro and in vivo methods that can be deployed throughout the drug discovery process. In addition, animal models and noninvasive biomarkers are described. EXPERT OPINION Reducing post-market drug withdrawals is essential for all pharmaceutical companies in a time of increased patient welfare and tight budgets. Predictive screens positioned early in the drug discovery process will help to reduce such liabilities. Although new and more efficient assays and models are being developed, the hunt for biomarkers and noninvasive techniques is still in progress.
Collapse
Affiliation(s)
- Claudia V Pereira
- Pfizer R&D, Compound Safety Prediction-WWMC, Cell Based Assays and Mitochondrial Biology, Eastern Point Rd, Groton, CT 06340, USA
| | | | | | | |
Collapse
|
32
|
Predicting in vivo safety characteristics using physiochemical properties and in vitro assays. Future Med Chem 2011; 3:1503-11. [DOI: 10.4155/fmc.11.89] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is increasing pressure on the pharmaceutical industry to deliver safer and more effective medicines while constraining research and development costs. In order to meet these demands, the industry is looking for basic design principles in terms of physicochemical properties as well as the use of higher throughput in vitro assays to select and evaluate new molecular entities for further development. Recent advances in understanding the relationships between a chemical’s properties and its propensity for adverse events, as well as the development of new in vitro screening technologies, have enhanced our ability to potentially select molecules more likely to succeed in becoming drugs. However, these approaches are still limited by the availability of data and our lack of understanding of the mechanisms by which compounds can cause toxicity.
Collapse
|
33
|
Abstract
Bioactivation through drug metabolism is frequently suspected as an initiating event in many drug toxicities. The CYP450 and peroxidase enzyme systems are generally considered the most important groups of enzymes involved in bioactivation, producing either electrophilic or radical metabolites. Drug design efforts routinely consider these factors, and a number of structural alerts for bioactivation have been identified. Among the most frequently encountered structural alerts are aromatic systems with electron-donating substituents and some five-membered heterocycles. Metabolism of these groups can lead to chemically reactive electrophiles. Strategies that have been used to minimize the associated risk involve replacing the structural-alert moiety, blocking or making metabolism less favorable, and incorporating metabolic soft spots to facilitate metabolism away from the structural-alert substituent. The metabolism of drugs to radicals usually leads to cellular oxidative stress. The formation of radical metabolites can be minimized through the use of similar approaches but remains an area less frequently considered in drug design.
Collapse
Affiliation(s)
- John S Walsh
- DMPK Consulting, Wake Forest, North Carolina 27587, USA.
| | | |
Collapse
|
34
|
Elsheikh A, Lavergne SN, Castrejon JL, Farrell J, Wang H, Sathish J, Pichler WJ, Park BK, Naisbitt DJ. Drug antigenicity, immunogenicity, and costimulatory signaling: evidence for formation of a functional antigen through immune cell metabolism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6448-60. [PMID: 20980635 PMCID: PMC3087426 DOI: 10.4049/jimmunol.1000889] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.
Collapse
Affiliation(s)
- Ayman Elsheikh
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
- Department of Pharmacology, University of Tanta, Tanta, Egypt
| | - Sidonie N. Lavergne
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| | - J. Luis Castrejon
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| | - John Farrell
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| | - Haiyi Wang
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| | - Jean Sathish
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| | - Werner J. Pichler
- Division of Allergology, Clinic of Rheumatology and Clinical Immunology/Allergology, Inselspital, Bern, Switzerland
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, England
| |
Collapse
|
35
|
Stimulation of pro-inflammatory responses by mebendazole in human monocytic THP-1 cells through an ERK signaling pathway. Arch Toxicol 2010; 85:199-207. [DOI: 10.1007/s00204-010-0584-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/01/2010] [Indexed: 12/21/2022]
|
36
|
Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway. Life Sci 2010; 87:537-44. [PMID: 20816994 DOI: 10.1016/j.lfs.2010.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/21/2010] [Accepted: 08/19/2010] [Indexed: 02/07/2023]
Abstract
AIMS Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. MAIN METHODS Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. KEY FINDINGS The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. SIGNIFICANCE The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury.
Collapse
|
37
|
Asare GA, Ntombini B, Kew MC, Kahler-Venter CP, Nortey EN. Possible adverse effect of high δ-alpha-tocopherol intake on hepatic iron overload: Enhanced production of vitamin C and the genotoxin, 8-hydroxy-2′- deoxyguanosine. Toxicol Mech Methods 2010; 20:96-104. [DOI: 10.3109/15376510903572888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Abstract
The development of catechol-O-methyltransferase (COMT) inhibitors for the adjunct treatment to levodopa and aromatic L-amino acid decarboxylase (AADC) inhibitors in Parkinson's disease started in the late 1950s. The first-generation inhibitors were associated with toxic properties: they induced convulsions, or they were toxic to the liver. None of them was taken into clinical use. The second-generation inhibitors entacapone and tolcapone have now been in clinical use for over a decade, and some new inhibitors are under development. The main adverse events in the use of entacapone and tolcapone are dopaminergic and dependent of the concomitant use of levodopa, but the symptoms are generally moderate or mild. Among the non-dopaminergic adverse events, diarrhea is the most prominent one induced by both entacapone and tolcapone. In clinical use, entacapone has been safe, but tolcapone is under strict regulations on liver enzyme monitoring, since in the early years, a few hepatotoxicity cases appeared, three of them with fatal outcome. The mechanism behind tolcapone-induced liver toxicity has been evaluated both in vitro and in vivo, but no clear answer exists at the moment. In the regulatory animal studies, both inhibitors have been safe with no reported toxicity. Also nebicapone, the latest of the second-generation inhibitors in clinical trials has shown some liver enzyme elevations in human subjects. New inhibitors with a structure differing from nitrocatechols are under development. No safety concerns have been reported connected to COMT inhibiton as such. COMT knockout mice are fertile without any pathologies due to the total COMT inhibition.
Collapse
|
39
|
Deng X, Luyendyk JP, Ganey PE, Roth RA. Inflammatory stress and idiosyncratic hepatotoxicity: hints from animal models. Pharmacol Rev 2009; 61:262-82. [PMID: 19805476 PMCID: PMC2763781 DOI: 10.1124/pr.109.001727] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADRs) present a serious human health problem. They are major contributors to hospitalization and mortality throughout the world (Lazarou et al., 1998; Pirmohamed et al., 2004). A small fraction (less than 5%) of ADRs can be classified as "idiosyncratic." Idiosyncratic ADRs (IADRs) are caused by drugs with diverse pharmacological effects and occur at various times during drug therapy. Although IADRs affect a number of organs, liver toxicity occurs frequently and is the primary focus of this review. Because of the inconsistency of clinical data and the lack of experimental animal models, how IADRs arise is largely undefined. Generation of toxic drug metabolites and induction of specific immunity are frequently cited as causes of IADRs, but definitive evidence supporting either mechanism is lacking for most drugs. Among the more recent hypotheses for causation of IADRs is that inflammatory stress induced by exogenous or endogenous inflammagens is a susceptibility factor. In this review, we give a brief overview of idiosyncratic hepatotoxicity and the inflammatory response induced by bacterial lipopolysaccharide. We discuss the inflammatory stress hypothesis and use as examples two drugs that have caused IADRs in human patients: ranitidine and diclofenac. The review focuses on experimental animal models that support the inflammatory stress hypothesis and on the mechanisms of hepatotoxic response in these models. The need for design of epidemiological studies and the potential for implementation of inflammation interaction studies in preclinical toxicity screening are also discussed briefly.
Collapse
Affiliation(s)
- Xiaomin Deng
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
40
|
Amodiaquine-induced oxidative stress in a hepatocyte inflammation model. Toxicology 2009; 256:101-9. [DOI: 10.1016/j.tox.2008.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/09/2008] [Accepted: 11/10/2008] [Indexed: 11/23/2022]
|
41
|
Hassoun EA, Mehta J. Dichloroacetate-induced modulation of cellular antioxidant enzyme activities and glutathione level in the J774A.1 cells. J Appl Toxicol 2009; 28:931-7. [PMID: 18493934 DOI: 10.1002/jat.1356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dichloroacetate (DCA) is used for different medical and industrial purposes and has been found to be a toxic by-product produced during the process of water chlorination. The DCA effects on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level were assessed and correlated with each other and also with cellular viabilities in J774A.1 macrophage cells. A concentration of 24 mm of DCA resulted in time-dependent decreases in cellular viability and glutathione level, and time-dependent increases in SOD activity when incubated with the cells for 24-48 h. DCA also resulted in significant increases in CAT and GSH-Px activities of the viable cells when incubated with the cells for 36 and 48 h. The changes in antioxidant enzyme activities and GSH levels were found to be strongly correlated with each other, and with cellular viabilities at different time points. While GSH did not result in any significant effects when added to the cells at concentrations ranging between 15 and 60 nmol ml(-1), it resulted in concentration-dependent increases in cellular viability when added to the DCA-treated cells, with maximal effects achieved at 45-60 nmol GSH ml(-1). However, cellular viability of the GSH + DCA treated cells remained below that of the control. Since viable cells from the DCA-treated cultures displayed significantly higher antioxidant enzyme activities compared with the control, it is concluded that those increases may have contributed to the cellular protection against DCA-induced cell death. Also, glutathione depletion has a major contribution to the observed cellular death induced by DCA.
Collapse
Affiliation(s)
- Ezdihar A Hassoun
- The University of Toledo, College of Pharmacy, Toledo, OH 43606, USA.
| | | |
Collapse
|
42
|
Shaw PJ, Ditewig AC, Waring JF, Liguori MJ, Blomme EA, Ganey PE, Roth RA. Coexposure of mice to trovafloxacin and lipopolysaccharide, a model of idiosyncratic hepatotoxicity, results in a unique gene expression profile and interferon gamma-dependent liver injury. Toxicol Sci 2009; 107:270-80. [PMID: 18930950 PMCID: PMC2638649 DOI: 10.1093/toxsci/kfn205] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/23/2008] [Indexed: 11/13/2022] Open
Abstract
The antibiotic trovafloxacin (TVX) has caused severe idiosyncratic hepatotoxicity in people, whereas levofloxacin (LVX) has not. Mice cotreated with TVX and lipopolysaccharide (LPS), but not with LVX and LPS, develop severe hepatocellular necrosis. Mice were treated with TVX and/or LPS, and hepatic gene expression changes were measured before liver injury using gene array. Hepatic gene expression profiles from mice treated with TVX/LPS clustered differently from those treated with LPS or TVX alone. Several of the probe sets expressed differently in TVX/LPS-treated mice were involved in interferon (IFN) signaling and the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. A time course of plasma concentrations of IFN-gamma and interleukin (IL)-18, which directly induces IFN-gamma production, revealed that both cytokines were selectively increased in TVX/LPS-treated mice. Both IL-18(-/-) and IFN-gamma(-/-) mice were significantly protected from TVX/LPS-induced liver injury. In addition, IFN-gamma(-/-) mice had decreased plasma concentrations of tumor necrosis factor-alpha, IL-18, and IL-1beta when compared to wild-type mice. In conclusion, the altered expression of genes involved in IFN signaling in TVX/LPS-treated mice led to the finding that IL-18 and IFN-gamma play a critical role in TVX/LPS-induced liver injury.
Collapse
Affiliation(s)
- Patrick J. Shaw
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Amy C. Ditewig
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Jeffrey F. Waring
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Michael J. Liguori
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Eric A. Blomme
- Department of Cell and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Roth
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
43
|
Julie NL, Julie IM, Kende AI, Wilson GL. Mitochondrial dysfunction and delayed hepatotoxicity: another lesson from troglitazone. Diabetologia 2008; 51:2108-16. [PMID: 18726085 DOI: 10.1007/s00125-008-1133-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/26/2008] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Troglitazone was approved for treatment of type 2 diabetes mellitus, but by 2000 it had been removed from all world markets due to severe drug-induced liver injury. Even today, we still do not know how many patients sustained a long-term liver injury. No system is in place to acquire that knowledge. Regarding toxicity mechanisms, controversy persists as to which ones are class effects of thiazolidinediones (TZDs) and which are unique to troglitazone. This study aims to provide long-term outcome data and new insights on mechanisms of troglitazone-induced liver injury. METHODS This case series reports the liver injuries sustained by eleven type 2 diabetic patients treated with troglitazone between 1997 and 2000. Exhaustive review of medical records was performed for all patients. Long-term outcomes were available for all the non-fatal cases. A comprehensive literature review was also performed. RESULTS Long-term liver injury progressing to cirrhosis was identified in seven patients. All eleven cases had liver injury patterns consistent with troglitazone toxicity. Analysis of these cases and of the experimental troglitazone toxicity data points to mitochondrial toxicity as a central factor. The general clinical patterns of mitochondrial hepatotoxic events are reviewed, as are the implications for other members of the TZD family. CONCLUSIONS/INTERPRETATION This analysis enables the liver injury induced by troglitazone to be better understood. In future cases of delayed drug-induced liver injury that progresses after discontinuation, the possibility of mitochondrial toxicity should be considered. When appropriate, this can then be evaluated experimentally. Such proactive investigation may anticipate clinical risk before a large-scale therapeutic misadventure occurs. Drug-induced liver injury due to mitochondrial hepatotoxins may be less unpredictable than has previously been surmised.
Collapse
Affiliation(s)
- N L Julie
- Department of Pathology, Shady Grove Adventist Hospital, Rockville, MD, USA.
| | | | | | | |
Collapse
|
44
|
Chang TKH, Abbott FS. Oxidative Stress as a Mechanism of Valproic Acid-Associated Hepatotoxicity. Drug Metab Rev 2008; 38:627-39. [PMID: 17145692 DOI: 10.1080/03602530600959433] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Valproic acid (2-n-propylpentanoic acid; VPA) has several therapeutic indications, but it is used primarily as an anticonvulsant. VPA is a relatively safe drug, but its use is associated with idiosyncratic hepatotoxicity, which in some cases may lead to fatality. The underlying mechanism responsible for the hepatotoxicity is still not well understood, but various hypotheses have been proposed, including oxidative stress. This article discusses the experimental evidence on the effect of VPA on the various indices of oxidative stress and on the potential role of oxidative stress in VPA-associated hepatotoxicity.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
45
|
Tafazoli S, Mashregi M, O'Brien PJ. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol 2008; 229:94-101. [DOI: 10.1016/j.taap.2008.01.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 12/01/2007] [Accepted: 01/01/2008] [Indexed: 01/12/2023]
|
46
|
Lim KM, Kim JS, Bae ON, Noh JY, Chung SM, Chung KY, Chung JH. Co-oxidation-mediated xenobiotic activation and cytotoxicity by 12-lipoxygenase in intact platelets. Toxicology 2008; 247:154-60. [DOI: 10.1016/j.tox.2008.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/06/2008] [Accepted: 02/28/2008] [Indexed: 11/17/2022]
|
47
|
Tafazoli S, O’Brien PJ. Accelerated Cytotoxic Mechanism Screening of Hydralazine Using an in Vitro Hepatocyte Inflammatory Cell Peroxidase Model. Chem Res Toxicol 2008; 21:904-10. [DOI: 10.1021/tx700371x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shahrzad Tafazoli
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Peter J. O’Brien
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
48
|
Hassoun EA, Dey S. Dichloroacetate- and trichloroacetate-induced phagocytic activation and production of oxidative stress in the hepatic tissues of mice after acute exposure. J Biochem Mol Toxicol 2008; 22:27-34. [DOI: 10.1002/jbt.20210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Wu YM, Joseph B, Berishvili E, Kumaran V, Gupta S. Hepatocyte transplantation and drug-induced perturbations in liver cell compartments. Hepatology 2008; 47:279-87. [PMID: 17935178 DOI: 10.1002/hep.21937] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
UNLABELLED The potential for organ damage after using drugs or chemicals is a critical issue in medicine. To delineate mechanisms of drug-induced hepatic injury, we used transplanted cells as reporters in dipeptidyl peptidase IV-deficient mice. These mice were given phenytoin and rifampicin for 3 days, after which monocrotaline was given followed 1 day later by intrasplenic transplantation of healthy C57BL/6 mouse hepatocytes. We examined endothelial and hepatic damage by serologic or tissue studies and assessed changes in transplanted cell engraftment and liver repopulation by histochemical staining for dipeptidyl peptidase IV. Monocrotaline caused denudation of the hepatic sinusoidal endothelium and increased serum hyaluronic acid levels, along with superior transplanted cell engraftment. Together, phenytoin, rifampicin, and monocrotaline caused further endothelial damage, reflected by greater improvement in cell engraftment. Phenytoin, rifampicin, and monocrotaline produced injury in hepatocytes that was not apparent after conventional tissue studies. This led to transplanted cell proliferation and extensive liver repopulation over several weeks, which was more efficient in males compared with females, including greater induction by phenytoin and rifampicin of cytochrome P450 3A4 isoform that converts monocrotaline to toxic intermediates. Through this and other possible mechanisms, monocrotaline-induced injury in the endothelial compartment was retargeted to simultaneously involve hepatocytes over the long term. Moreover, after this hepatic injury, native liver cells were more susceptible to additional pro-oxidant injury through thyroid hormone, which accelerated the kinetics of liver repopulation. CONCLUSION Transplanted reporter cells will be useful for obtaining insights into homeostatic mechanisms involving liver cell compartments, whereas targeted injury in hepatic endothelial and parenchymal cells with suitable drugs will also help advance liver cell therapy.
Collapse
Affiliation(s)
- Yao-Ming Wu
- Marion Bessin Liver Research Center, Diabetes Center, Cancer Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
50
|
Chapter 2 Drug-Induced Hepatotoxicity: Learning from Recent Cases of Drug Attrition. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1872-0854(07)02002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|