1
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
2
|
Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol 2019; 105:1319-1329. [PMID: 31107565 DOI: 10.1002/jlb.mr0718-269r] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 04/14/2019] [Indexed: 12/29/2022] Open
Abstract
Cellular cytotoxicity, the ability to kill other cells, is an important effector mechanism of the immune system to combat viral infections and cancer. Cytotoxic T cells and natural killer (NK) cells are the major mediators of this activity. Here, we summarize the cytotoxic mechanisms of NK cells. NK cells can kill virally infected of transformed cells via the directed release of lytic granules or by inducing death receptor-mediated apoptosis via the expression of Fas ligand or TRAIL. The biogenesis of perforin and granzymes, the major components of lytic granules, is a highly regulated process to prevent damage during the synthesis of these cytotoxic molecules. Additionally, NK cells have developed several strategies to protect themselves from the cytotoxic activity of granular content upon degranulation. While granule-mediated apoptosis is a fast process, death receptor-mediated cytotoxicity requires more time. Current data suggest that these 2 cytotoxic mechanisms are regulated during the serial killing activity of NK cells. As many modern approaches of cancer immunotherapy rely on cellular cytotoxicity for their effectiveness, unraveling these pathways will be important to further progress these therapeutic strategies.
Collapse
Affiliation(s)
- Isabel Prager
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
3
|
Della Valle MC, Sleat DE, Zheng H, Moore DF, Jadot M, Lobel P. Classification of subcellular location by comparative proteomic analysis of native and density-shifted lysosomes. Mol Cell Proteomics 2011; 10:M110.006403. [PMID: 21252268 DOI: 10.1074/mcp.m110.006403] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One approach to the functional characterization of the lysosome lies in the use of proteomic methods to identify proteins in subcellular fractions enriched for this organelle. However, distinguishing between true lysosomal residents and proteins from other cofractionating organelles is challenging. To this end, we implemented a quantitative mass spectrometry approach based on the selective decrease in the buoyant density of liver lysosomes that occurs when animals are treated with Triton-WR1339. Liver lysosome-enriched preparations from control and treated rats were fractionated by isopycnic sucrose density gradient centrifugation. Tryptic peptides derived from gradient fractions were reacted with isobaric tag for relative and absolute quantitation eight-plex labeling reagents and analyzed by two-dimensional liquid chromatography matrix-assisted laser desorption ionization time-of-flight MS. Reporter ion intensities were used to generate relative protein distribution profiles across both types of gradients. A distribution index was calculated for each identified protein and used to determine a probability of lysosomal residence by quadratic discriminant analysis. This analysis suggests that several proteins assigned to the lysosome in other proteomics studies are not true lysosomal residents. Conversely, results support lysosomal residency for other proteins that are either not or only tentatively assigned to this location. The density shift for two proteins, Cu/Zn superoxide dismutase and ATP-binding cassette subfamily B (MDR/TAP) member 6, was corroborated by quantitative Western blotting. Additional balance sheet analyses on differential centrifugation fractions revealed that Cu/Zn superoxide dismutase is predominantly cytosolic with a secondary lysosomal localization whereas ATP-binding cassette subfamily B (MDR/TAP) member 6 is predominantly lysosomal. These results establish a quantitative mass spectrometric/subcellular fractionation approach for identification of lysosomal proteins and underscore the necessity of balance sheet analysis for localization studies.
Collapse
Affiliation(s)
- Maria Cecilia Della Valle
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
4
|
Impaired lysosomal trimming of N-linked oligosaccharides leads to hyperglycosylation of native lysosomal proteins in mice with alpha-mannosidosis. Mol Cell Biol 2010; 30:273-83. [PMID: 19884343 DOI: 10.1128/mcb.01143-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alpha-mannosidosis is caused by the genetic defect of the lysosomal alpha-d-mannosidase (LAMAN), which is involved in the breakdown of free alpha-linked mannose-containing oligosaccharides originating from glycoproteins with N-linked glycans, and thus manifests itself in an extensive storage of mannose-containing oligosaccharides. Here we demonstrate in a model of mice with alpha-mannosidosis that native lysosomal proteins exhibit elongated N-linked oligosaccharides as shown by two-dimensional difference gel electrophoresis, deglycosylation assays, and mass spectrometry. The analysis of cathepsin B-derived oligosaccharides revealed a hypermannosylation of glycoproteins in mice with alpha-mannosidosis as indicated by the predominance of extended Man3GlcNAc2 oligosaccharides. Treatment with recombinant human alpha-mannosidase partially corrected the hyperglycosylation of lysosomal proteins in vivo and in vitro. These data clearly demonstrate that LAMAN is involved not only in the lysosomal catabolism of free oligosaccharides but also in the trimming of asparagine-linked oligosaccharides on native lysosomal proteins.
Collapse
|
5
|
Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci U S A 2008; 105:16590-5. [PMID: 18940929 DOI: 10.1073/pnas.0807472105] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most newly synthesized proteins destined for the lysosome reach this location via a specific intracellular pathway. In the Golgi, a phosphotransferase specifically labels lysosomal proteins with mannose 6-phosphate (Man-6-P). This modification is recognized by receptors that target the lysosomal proteins to the lysosome where, in most cell types, the Man-6-P recognition marker is rapidly removed. Despite extensive characterization of this pathway, the enzyme responsible for the removal of the targeting modification has remained elusive. In this study, we have identified this activity. Preliminary investigations using a cell-based bioassay were used to follow a dephosphorylation activity that was associated with the lysosomal fraction. This activity was high in the liver, where endogenous lysosomal proteins are efficiently dephosphorylated, but present at a much lower level in the brain, where the modification persists. This observation, combined with an analysis of the expression of lysosomal proteins in different tissues, led us to identify acid phosphatase 5 (ACP5) as a candidate for the enzyme that removes Man-6-P. Expression of ACP5 in N1E-115 neuroblastoma cells, which do not efficiently dephosphorylate lysosomal proteins, significantly decreased the steady state levels of Man6-P glycoproteins. Analysis of ACP5-deficient mice revealed that levels of Man-6-P glycoproteins were highly elevated in tissues that normally express ACP5, and this resulted from a failure to dephosphorylate lysosomal proteins. These results indicate a central role for ACP5 in removal of the Man-6-P recognition marker and open up new avenues to investigate the importance of this process in cell biology and medicine.
Collapse
|
6
|
Probst OC, Ton P, Svoboda B, Gannon A, Schuhmann W, Wieser J, Pohlmann R, Mach L. The 46-kDa mannose 6-phosphate receptor does not depend on endosomal acidification for delivery of hydrolases to lysosomes. J Cell Sci 2006; 119:4935-43. [PMID: 17105763 DOI: 10.1242/jcs.03283] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammalian cells, the mannose 6-phosphate receptor pathway accounts for the transport of most soluble acid hydrolases to lysosomes. It is believed that dissociation of mannose 6-phosphate receptors and their ligands is entirely driven by the acidic environment in endosomal compartments. Indeed, pH-perturbing substances such as ammonium chloride and monensin have been shown to inhibit lysosomal enzyme targeting in cells that express both known mannose 6-phosphate receptors. We now demonstrate that ammonium chloride and monensin exert modest effects on the intracellular retention of lysosomal hydrolases in murine cells that synthesize only the 46-kDa mannose 6-phosphate receptor. Neither ammonium chloride nor monensin induces changes to the subcellular localization of lysosomal hydrolases and the 46-kDa mannose 6-phosphate receptor in these cells. This suggests that endosomal dissociation of the receptor and its ligands still occurs in the presence of these agents. We conclude that the murine 46-kDa mannose 6-phosphate receptor has the capacity to deliver its cargo proteins to lysosomes even in the absence of endosomal acidification.
Collapse
Affiliation(s)
- Olivia C Probst
- Institut für Angewandte Genetik und Zellbiologie, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kalamidas SA, Kotoulas OB, Hann AC. Histochemical localization of acid mannose 6-phosphatase activity in the newborn rat hepatocytes. Morphologie 2004; 88:176-8. [PMID: 15693419 DOI: 10.1016/s1286-0115(04)98144-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The localization of acid mannose 6-phosphatase activity in newborn rat hepatocytes was demonstrated at the electron microscopic level by using a histochemical method based on the work of Robinson and Karnovsky. Reaction product was virtually restricted to the lysosomes. Most of them exhibited various grades of reactivity. Some were devoid of activity. Our observations suggested that this histochemical method could be used to differentiate distinct subpopulations of lysosomes on the basis of their acid mannose 6-phosphatase activity.
Collapse
Affiliation(s)
- S A Kalamidas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina 451 10, Greece.
| | | | | |
Collapse
|
8
|
Journet A, Ferro M. The potentials of MS-based subproteomic approaches in medical science: the case of lysosomes and breast cancer. MASS SPECTROMETRY REVIEWS 2004; 23:393-442. [PMID: 15290709 DOI: 10.1002/mas.20001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because of the great number of women who are diagnosed with breast cancer each year, and though this disease presents the lowest mortality rate among cancers, breast cancer remains a major public health problem. As for any cancer, the tumorigenic and metastatic processes are still hardly understood, and the biochemical markers that allow either a precise monitoring of the disease or the classification of the numerous forms of breast cancer remain too scarce. Therefore, great hopes are put on the development of high-throughput genomic and proteomic technologies. Such comprehensive techniques should help in understanding the processes and in defining steps of the disease by depicting specific genes or protein profiles. Because techniques dedicated to the current proteomic challenges are continuously improving, the probability of the discovery of new potential protein biomarkers is rapidly increasing. In addition, the identification of such markers should be eased by lowering the sample complexity; e.g., by sample fractionation, either according to specific physico-chemical properties of the proteins, or by focusing on definite subcellular compartments. In particular, proteins of the lysosomal compartment have been shown to be prone to alterations in their localization, expression, or post-translational modifications (PTMs) during the cancer process. Some of them, such as the aspartic protease cathepsin D (CatD), have even been proven as participating actively in the disease progression. The present review aims at giving an overview of the implication of the lysosome in breast cancer, and at showing how subproteomics and the constantly refining MS-based proteomic techniques may help in making breast cancer research progress, and thus, hopefully, in improving disease treatment.
Collapse
Affiliation(s)
- Agnès Journet
- Laboratoire de Chimie des Protéines, ERM-0201 Inserm, DRDC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France.
| | | |
Collapse
|
9
|
Abstract
Glycogen autophagy, which includes the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective process under conditions of demand for the massive hepatic production of glucose, as in the postnatal period. It represents a link between autophagy and glycogen metabolism. The formation of autophagic vacuoles in the hepatocytes of newborn animals is spatially and biochemically related to the degradation of cell glycogen. Many molecular elements and signaling pathways including the cyclic AMP/cyclic AMP-dependent protein kinase and the phosphoinositides/TOR pathways are implicated in the control of this process. These two pathways may converge on the same target to regulate glycogen autophagy.
Collapse
Affiliation(s)
- Othon B Kotoulas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina 451 10, Greece.
| | | | | |
Collapse
|
10
|
Kalamidas SA, Kotoulas OB, Hann AC. Studies on glycogen autophagy: effects of phorbol myristate acetate, ionophore A23187, or phentolamine. Microsc Res Tech 2002; 57:507-11. [PMID: 12112433 DOI: 10.1002/jemt.10104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of agents that could manipulate the lysosomal calcium such as phorbol myristate acetate, ionophore A23187, and phentolamine on the lysosomal glycogen degradation were studied by electron microscopy, morphometric analysis, and biochemical assays in newborn rat hepatocytes. Phorbol myristate acetate, which promotes the input of calcium to lysosomes, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid alpha 1,4 glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles and also decreased the activity of acid mannose 6-phosphatase. Ionophore A23187, which releases lysosomal calcium, produced opposite results in these enzyme activities. Phentolamine, an alpha-adrenergic blocking agent which interferes with the generation of phosphoinositides and may activate the lysosomal calcium uptake pump, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles. The results of this study constitute evidence that changes in lysosomal calcium may influence certain aspects of autophagy, including the degradation of glycogen inside the autophagic vacuoles. They also support our previous postulate [Kalamidas and Kotoulas (2000a,b) Histol Histopathol 15:29-35, 1011-1018] that stimulation of autophagic mechanisms in newborn rat hepatocytes may be associated with acid mannose 6-phosphatase activity-deficient lysosomes.
Collapse
Affiliation(s)
- S A Kalamidas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
11
|
Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 2000; 103:491-500. [PMID: 11081635 DOI: 10.1016/s0092-8674(00)00140-9] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The serine proteinase granzyme B is crucial for the rapid induction of target cell apoptosis by cytotoxic T cells. Granzyme B was recently demonstrated to enter cells in a perforin-independent manner, thus predicting the existence of a cell surface receptor(s). We now present evidence that this receptor is the cation-independent mannose 6-phosphate/insulin-like growth factor receptor (CI-MPR). Inhibition of the granzyme B-CI-MPR interaction prevented granzyme B cell surface binding, uptake, and the induction of apoptosis. Significantly, expression of the CI-MPR was essential for cytotoxic T cell-mediated apoptosis of target cells in vitro and for the rejection of allogeneic cells in vivo. These results suggest a novel target for immunotherapy and a potential mechanism used by tumors for immune evasion.
Collapse
Affiliation(s)
- B Motyka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jadot M, Lin L, Sleat DE, Sohar I, Hsu MS, Pintar J, Dubois F, Wattiaux-De Coninck S, Wattiaux R, Lobel P. Subcellular localization of mannose 6-phosphate glycoproteins in rat brain. J Biol Chem 1999; 274:21104-13. [PMID: 10409663 DOI: 10.1074/jbc.274.30.21104] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular transport of soluble lysosomal enzymes relies on the post-translational modification of N-linked oligosaccharides to generate mannose 6-phosphate (Man 6-P) residues. In most cell types the Man 6-P signal is rapidly removed after targeting of the precursor proteins from the Golgi to lysosomes via interactions with Man 6-phosphate receptors. However, in brain, the steady state proportion of lysosomal enzymes containing Man 6-P is considerably higher than in other tissues. As a first step toward understanding the mechanism and biological significance of this observation, we analyzed the subcellular localization of the rat brain Man 6-P glycoproteins by combining biochemical and morphological approaches. The brain Man 6-P glycoproteins are predominantly localized in neuronal lysosomes with no evidence for a steady state localization in nonlysosomal or prelysosomal compartments. This contrasts with the clear endosome-like localization of the low steady state proportion of mannose-6-phosphorylated lysosomal enzymes in liver. It therefore seems likely that the observed high percentage of phosphorylated species in brain is a consequence of the accumulation of lysosomal enzymes in a neuronal lysosome that does not fully dephosphorylate the Man 6-P moieties.
Collapse
Affiliation(s)
- M Jadot
- Laboratory of Physiological Chemistry, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Press B, Feng Y, Hoflack B, Wandinger-Ness A. Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J Cell Biol 1998; 140:1075-89. [PMID: 9490721 PMCID: PMC2132709 DOI: 10.1083/jcb.140.5.1075] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1997] [Revised: 01/08/1998] [Indexed: 02/06/2023] Open
Abstract
Stable BHK cell lines inducibly expressing wild-type or dominant negative mutant forms of the rab7 GTPase were isolated and used to analyze the role of a rab7-regulated pathway in lysosome biogenesis. Expression of mutant rab7N125I protein induced a dramatic redistribution of cation-independent mannose 6-phosphate receptor (CI-MPR) from its normal perinuclear localization to large peripheral endosomes. Under these circumstances approximately 50% of the total receptor and several lysosomal hydrolases cofractionated with light membranes containing early endosome and Golgi markers. Late endosomes and lysosomes were contained exclusively in well-separated, denser gradient fractions. Newly synthesized CI-MPR and cathepsin D were shown to traverse through an early endocytic compartment, and functional rab7 was crucial for delivery to later compartments. This observation was evidenced by the fact that 2 h after synthesis, both markers were more prevalent in fractions containing light membranes. In addition, both were sensitive to HRP-DAB- mediated cross-linking of early endosomal proteins, and the late endosomal processing of cathepsin D was impaired. Using similar criteria, the lysosomal membrane glycoprotein 120 was not found accumulated in an early endocytic compartment. The data are indicative of a post-Golgi divergence in the routes followed by different lysosome-directed molecules.
Collapse
Affiliation(s)
- B Press
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|
14
|
Sleat DE, Kraus SR, Sohar I, Lackland H, Lobel P. alpha-Glucosidase and N-acetylglucosamine-6-sulphatase are the major mannose-6-phosphate glycoproteins in human urine. Biochem J 1997; 324 ( Pt 1):33-9. [PMID: 9164838 PMCID: PMC1218398 DOI: 10.1042/bj3240033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most newly synthesized lysosomal enzymes contain a transient carbohydrate modification, mannose 6-phosphate (Man-6-P), which signals their vesicular transport from the Golgi to the lysosome via Man-6-P receptors (MPRs). We have examined Man-6-P glycoproteins in human urine by using a purified soluble fragment of the soluble cation-independent MPR (sCI-MPR) as a preparative and analytical affinity reagent. In a survey of urine samples from seven healthy subjects, the pattern of Man-6-P glycoproteins detected with iodinated sCI-MPR as a probe in a blotting assay was essentially identical in each, regardless of sex or age. Two bands of approx. 100 and 110 kDa were particularly prominent. Man-6-P glycoproteins in human urine were purified by affinity chromatography on immobilized sCI-MPR. Seven distinct bands revealed by SDS/PAGE and Coomassie Blue staining were subjected to N-terminal sequence analysis. The prominent 100 and 110 kDa Man-6-P glycoproteins were identified as N-acetylglucosamine-6-sulphatase and alpha-glucosidase respectively. This identification was confirmed by molecular mass determinations on the two major bands after deglycosylation. Sequence analysis revealed arylsulphatase A and several previously unidentified proteins as minor species. Man-6-P glycoproteins were also purified on an analytical scale to determine the proportion of a number of lysosomal enzyme activities represented by the mannose-6-phosphorylated forms. The lysosomal enzymes in urine containing the highest proportion of mannose-6-phosphorylated form were beta-mannosidase (82%), hexosaminidase (27%) and alpha-glucosidase (24%). The profiles of Man-6-P glycoproteins detected by blotting in urine and plasma were not similar, suggesting that the urinary species are not derived from the bloodstream.
Collapse
Affiliation(s)
- D E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
15
|
Sleat DE, Sohar I, Lackland H, Majercak J, Lobel P. Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis. J Biol Chem 1996; 271:19191-8. [PMID: 8702598 DOI: 10.1074/jbc.271.32.19191] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mannose 6-phosphate (Man-6-P) is a posttranslational carbohydrate modification typical of newly synthesized acid hydrolases that signals targeting from the Golgi apparatus to the lysosome via Man-6-P receptors (MPRs). Using iodinated cation independent MPR as a probe in a Western blot assay, we surveyed levels of Man-6-P glycoproteins in a number of different rat tissues. Considerable variation was observed with respect to total amounts and types of Man-6-P glycoproteins in the different tissues. Brain contained 2-8-fold more Man-6-P glycoproteins than other tissues, with relative abundance being brain >> testis approximately heart > lung approximately kidney approximately ovary approximately spleen > skeletal muscle approximately liver approximately serum. Analysis of 16 different lysosomal enzyme activities revealed that brain contains lower activities than other tissues which suggested that decreased removal of Man-6-P results in increased levels of Man-6-P glycoproteins. This was directly demonstrated by comparing activities of phosphorylated lysosomal enzymes, purified by immobilized MPR affinity chromatography, with total activities. The phosphorylated forms accounted for a considerable proportion of the MPR-targeted activities measured in brain (on average, 36.2%) but very little in lung, kidney, and liver (on average, 5.5, 2.3, and 0. 7%, respectively). Man-6-P glycoproteins were also isolated from rat brain by MPR affinity chromatography on a preparative scale. Of the 18 bands resolvable by SDS-polyacrylamide gel electrophoresis, seven bands were NH2-terminally sequenced and identified as the known lysosomal enzymes cathepsin L, cathepsin A, cathepsin D, alpha-galactosidase A, arylsulfatase A, and alpha-iduronidase. One of the major Man-6-P glycoproteins was identified as palmitoyl protein thioesterase, which was not previously thought to be lysosomal. This finding raises important questions about the cellular location and function of palmitoyl protein thioesterase, mutations in which result in the neurodegenerative disorder, infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- D E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
16
|
Bresciani R, Von Figura K. Dephosphorylation of the mannose-6-phosphate recognition marker is localized in later compartments of the endocytic route. Identification of purple acid phosphatase (uteroferrin) as the candidate phosphatase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:669-74. [PMID: 8706666 DOI: 10.1111/j.1432-1033.1996.0669w.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mannose-6-phosphate (Man6P) recognition marker in lysosomal proteins is known to be dephosphorylated after the delivery of lysosomal proteins to the endosome/lysosome compartment. The rate of Man6P recognition marker inactivation depends on the cell type and lysosomal protein. In the present study we show that in BHK 21 cells, which rapidly dephosphorylate lysosomal proteins, the recognition marker is stable in the endosomal compartment, to which lysosomal enzymes such as arylsulfatase A are delivered during endocytosis at 20 degrees C. Dephosphorylation depends on the transfer of internalized lysosomal enzymes from the 20 degrees C compartment to later compartments, most likely lysosomes. This transfer is sensitive to NH4C1 and nocodazole. In vitro experiments identified purple acid phosphatase (uteroferrin) as a candidate for the lysosomal phosphatase catalyzing in vivo the dephosphorylation of Man6P recognition marker.
Collapse
|
17
|
Affiliation(s)
- T Braulke
- Institut für Biochemie II, Georg-August-Universitat, Göttingen, Germany
| |
Collapse
|
18
|
Meldal M, Christensen MK, Bock K. Large-scale synthesis of d-mannose 6-phosphate and other hexose 6-phosphates. Carbohydr Res 1992. [DOI: 10.1016/0008-6215(92)80082-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|