1
|
Kao JA, Ewen-Campen B, Extavour CG. Divergence of germ cell-less roles in germ line development across insect species. Dev Biol 2025:S0012-1606(25)00119-8. [PMID: 40334835 DOI: 10.1016/j.ydbio.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
During development, sexually reproducing animals must specify and maintain the germ line, the lineage of cells that gives rise to the next generation of animals. In the fruit fly Drosophila melanogaster, germ cell-less (gcl) is required for the formation of primordial germ cells in the form of cells that cellularize at the posterior pole of the embryo, called pole cells. Forming pole cells is a mechanism of germ cell formation unique to a subset of insects. Even though most animals do not form pole cells as primordial germ cells, gcl is conserved across Metazoa, raising the question of how this conserved gene acquired its central role in the evolutionarily derived process of pole cell formation. Here, we examine the functions of gcl in two other insects with different modes of germ cell specification: the milkweed bug Oncopeltus fasciatus and the cricket Gryllus bimaculatus. We found that gcl is involved in germ cell development, but not strictly required for germ cell specification, in O. fasciatus, although it appears to function through a mechanism different from that in D. melanogaster. In contrast, we could not detect any impact on the embryonic germ line upon gcl knockdown in G. bimaculatus. This work serves as a case study into how the roles of genes in the process of germ line development can change over evolutionary time across animals.
Collapse
Affiliation(s)
- Jonchee A Kao
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Mukherjee A, Kapoor M, Shankta K, Fallacaro S, Carter RD, Ratchasanmuang P, Haloush YI, Mir M. A cluster of RNA Polymerase II molecules is stably associated with an active gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637507. [PMID: 39990393 PMCID: PMC11844394 DOI: 10.1101/2025.02.10.637507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In eukaryotic nuclei, transcription is associated with discrete foci of RNA Polymerase II (RNAPII) molecules. How these clusters interact with genes and their impact on transcriptional activity remain heavily debated. Here we take advantage of the naturally occurring increase in transcriptional activity during Zygotic Genome Activation (ZGA) in Drosophila melanogaster embryos to characterize the functional roles of RNAPII clusters in a developmental context. Using single-molecule tracking and lattice light-sheet microscopy, we find that RNAPII cluster formation depends on transcription initiation and that cluster lifetimes are reduced upon transcription elongation. We show that single clusters are stably associated with active gene loci during transcription and that cluster intensities are strongly correlated with transcriptional output. Our data suggest that prior to ZGA, RNAPII clusters prime genes for activation, whereas after ZGA, clusters are composed mostly of elongating molecules at individual genes.
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Manya Kapoor
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Kareena Shankta
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Roy and Diana Vagelos Program in Life Sciences and Management, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Samantha Fallacaro
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine; Philadelphia, PA 19104, USA
| | - Raymond D. Carter
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Biochemistry, Biophysics, and Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Puttachai Ratchasanmuang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Yara I. Haloush
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, Magalska A. Neuronal activation affects the organization and protein composition of the nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119829. [PMID: 39197592 DOI: 10.1016/j.bbamcr.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
Collapse
Affiliation(s)
- Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Hajnowski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Marek Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Valyaeva AA, Sheval EV. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:688-700. [PMID: 38831505 DOI: 10.1134/s0006297924040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 06/05/2024]
Abstract
Eukaryotic cells are characterized by a high degree of compartmentalization of their internal contents, which ensures precise and controlled regulation of intracellular processes. During many processes, including different stages of transcription, dynamic membraneless compartments termed biomolecular condensates are formed. Transcription condensates contain various transcription factors and RNA polymerase and are formed by high- and low-specificity interactions between the proteins, DNA, and nearby RNA. This review discusses recent data demonstrating important role of nonspecific multivalent protein-protein and RNA-protein interactions in organization and regulation of transcription.
Collapse
Affiliation(s)
- Anna A Valyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Kim T, Yoo J, Do S, Hwang DS, Park Y, Shin Y. RNA-mediated demixing transition of low-density condensates. Nat Commun 2023; 14:2425. [PMID: 37105967 PMCID: PMC10140143 DOI: 10.1038/s41467-023-38118-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Biomolecular condensates play a key role in organizing cellular reactions by concentrating a specific set of biomolecules. However, whether condensate formation is accompanied by an increase in the total mass concentration within condensates or by the demixing of already highly crowded intracellular components remains elusive. Here, using refractive index imaging, we quantify the mass density of several condensates, including nucleoli, heterochromatin, nuclear speckles, and stress granules. Surprisingly, the latter two condensates exhibit low densities with a total mass concentration similar to the surrounding cyto- or nucleoplasm. Low-density condensates display higher permeability to cellular protein probes. We find that RNA tunes the biomolecular density of condensates. Moreover, intracellular structures such as mitochondria heavily influence the way phase separation proceeds, impacting the localization, morphology, and growth of condensates. These findings favor a model where segregative phase separation driven by non-associative or repulsive molecular interactions together with RNA-mediated selective association of specific components can give rise to low-density condensates in the crowded cellular environment.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeyoon Yoo
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea
- Tomocube Inc, Daejeon, 34109, South Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
6
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
8
|
Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 2021; 22:653-670. [PMID: 34341548 DOI: 10.1038/s41580-021-00387-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Gene regulation requires the dynamic coordination of hundreds of regulatory factors at precise genomic and RNA targets. Although many regulatory factors have specific affinity for their nucleic acid targets, molecular diffusion and affinity models alone cannot explain many of the quantitative features of gene regulation in the nucleus. One emerging explanation for these quantitative properties is that DNA, RNA and proteins organize within precise, 3D compartments in the nucleus to concentrate groups of functionally related molecules. Recently, nucleic acids and proteins involved in many important nuclear processes have been shown to engage in cooperative interactions, which lead to the formation of condensates that partition the nucleus. In this Review, we discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours. We describe key mechanisms of nuclear compartment formation, including emerging roles for non-coding RNAs in facilitating their formation, and discuss the functional role of nuclear compartments in transcription regulation, co-transcriptional and post-transcriptional RNA processing, and higher-order chromatin regulation. More generally, we discuss how compartmentalization may explain important quantitative aspects of gene regulation.
Collapse
Affiliation(s)
- Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drew Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Coordination of transcription, processing, and export of highly expressed RNAs by distinct biomolecular condensates. Emerg Top Life Sci 2021; 4:281-291. [PMID: 32338276 PMCID: PMC7733674 DOI: 10.1042/etls20190160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Genes under control of super-enhancers are expressed at extremely high levels and are frequently associated with nuclear speckles. Recent data suggest that the high concentration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-enhancers create phase-separated condensates. Transcription initiates within or at the surface of these phase-separated droplets and the phosphorylation of Pol II, associated with transcription initiation and elongation, dissociates Pol II from these domains leading to engagement with nuclear speckles, which are enriched with RNA processing factors. The transitioning of Pol II from transcription initiation domains to RNA processing domains effectively co-ordinates transcription and processing of highly expressed RNAs which are then rapidly exported into the cytoplasm.
Collapse
|
10
|
Liu JL, Gall JG. Cold shock induces novel nuclear bodies in Xenopus oocytes. Exp Cell Res 2021; 398:112386. [PMID: 33220259 PMCID: PMC7771896 DOI: 10.1016/j.yexcr.2020.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Here we describe novel spherical structures that are induced by cold shock on the lampbrush chromosomes (LBCs) of Xenopus laevis oocytes. We call these structures cold bodies or C-bodies. C-bodies are distributed symmetrically on homologous LBCs, with a pattern similar to that of 5S rDNA. Neither active transcription nor translation is necessary for their formation. Similar protrusions occur on the edges of some nucleoli. Endogenous LBCs as well as those derived from injected sperm form C-bodies under cold shock conditions. The function of C-bodies is unknown.
Collapse
Affiliation(s)
- Ji-Long Liu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
| |
Collapse
|
11
|
Tsai A, Galupa R, Crocker J. Robust and efficient gene regulation through localized nuclear microenvironments. Development 2020; 147:147/19/dev161430. [PMID: 33020073 DOI: 10.1242/dev.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmental enhancers drive gene expression in specific cell types during animal development. They integrate signals from many different sources mediated through the binding of transcription factors, producing specific responses in gene expression. Transcription factors often bind low-affinity sequences for only short durations. How brief, low-affinity interactions drive efficient transcription and robust gene expression is a central question in developmental biology. Localized high concentrations of transcription factors have been suggested as a possible mechanism by which to use these enhancer sites effectively. Here, we discuss the evidence for such transcriptional microenvironments, mechanisms for their formation and the biological consequences of such sub-nuclear compartmentalization for developmental decisions and evolution.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rafael Galupa
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans. Essays Biochem 2020; 64:233-249. [PMID: 32756873 DOI: 10.1042/ebc20190067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial chromosomes (ACs), generated in yeast (YACs) and human cells (HACs), have facilitated our understanding of the trans-acting proteins, cis-acting elements, such as the centromere, and epigenetic environments that are necessary to maintain chromosome stability. The centromere is the unique chromosomal region that assembles the kinetochore and connects to microtubules to orchestrate chromosome movement during cell division. While monocentromeres are the most commonly characterized centromere organization found in studied organisms, diffused holocentromeres along the chromosome length are observed in some plants, insects and nematodes. Based on the well-established DNA microinjection method in holocentric Caenorhabditis elegans, concatemerization of foreign DNA can efficiently generate megabase-sized extrachromosomal arrays (Exs), or worm ACs (WACs), for analyzing the mechanisms of WAC formation, de novo centromere formation, and segregation through mitosis and meiosis. This review summarizes the structural, size and stability characteristics of WACs. Incorporating LacO repeats in WACs and expressing LacI::GFP allows real-time tracking of newly formed WACs in vivo, whereas expressing LacI::GFP-chromatin modifier fusions can specifically adjust the chromatin environment of WACs. The WACs mature from passive transmission to autonomous segregation by establishing a holocentromere efficiently in a few cell cycles. Importantly, WAC formation does not require any C. elegans genomic DNA sequence. Thus, DNA substrates injected can be changed to evaluate the effects of DNA sequence and structure in WAC segregation. By injecting a complex mixture of DNA, a less repetitive WAC can be generated and propagated in successive generations for DNA sequencing and analysis of the established holocentromere on the WAC.
Collapse
|
13
|
Alkalay E, Gam Ze Letova Refael C, Shoval I, Kinor N, Sarid R, Shav-Tal Y. The Sub-Nuclear Localization of RNA-Binding Proteins in KSHV-Infected Cells. Cells 2020; 9:cells9091958. [PMID: 32854341 PMCID: PMC7564026 DOI: 10.3390/cells9091958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins, particularly splicing factors, localize to sub-nuclear domains termed nuclear speckles. During certain viral infections, as the nucleus fills up with replicating virus compartments, host cell chromatin distribution changes, ending up condensed at the nuclear periphery. In this study we wished to determine the fate of nucleoplasmic RNA-binding proteins and nuclear speckles during the lytic cycle of the Kaposi's sarcoma associated herpesvirus (KSHV). We found that nuclear speckles became fewer and dramatically larger, localizing at the nuclear periphery, adjacent to the marginalized chromatin. Enlarged nuclear speckles contained splicing factors, whereas other proteins were nucleoplasmically dispersed. Polyadenylated RNA, typically found in nuclear speckles under regular conditions, was also found in foci separated from nuclear speckles in infected cells. Poly(A) foci did not contain lncRNAs known to colocalize with nuclear speckles but contained the poly(A)-binding protein PABPN1. Examination of the localization of spliced viral RNAs revealed that some spliced transcripts could be detected within the nuclear speckles. Since splicing is required for the maturation of certain KSHV transcripts, we suggest that the infected cell does not dismantle nuclear speckles but rearranges their components at the nuclear periphery to possibly serve in splicing and transport of viral RNAs into the cytoplasm.
Collapse
|
14
|
Zhang Z, Huang Q, Wang Z, Zou J, Yu Z, Strauss Iii JF, Zhang Z. Elongin B is a binding partner of the male germ cell nuclear speckle protein sperm-associated antigen 16S (SPAG16S) and is regulated post-transcriptionally in the testis. Reprod Fertil Dev 2020; 31:962-971. [PMID: 30811962 DOI: 10.1071/rd18303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
In this study we identified Elongin B, a regulatory subunit of the trimeric elongation factor Elongin ABC, which increases the overall rate of elongation by RNA polymerase II, as a major binding partner of sperm-associated antigen 16S (SPAG16S), a component of nuclear speckles. Nuclear speckles are nuclear subcompartments involved in RNA maturation. Previously, we showed that SPAG16S is essential for spermatogenesis. In the present study, a specific antibody against mouse Elongin B was generated and reacted with a protein with the predicted size of Elongin B in the testis; immunofluorescence staining revealed that the Elongin B was located in the nuclei and residual bodies. In round spermatids, Elongin B was colocalised with splicing factor SC35 (SC35), a marker of nuclear speckles. During the first wave of spermatogenesis, Elongin B transcripts were initially detected at Postnatal Day (PND) 8, and levels were greatly increased afterwards. However, Elongin B protein was only found from PND30, when germ cells progressed through spermiogenesis. Polysomal gradient analysis of Elongin B transcripts isolated from adult mouse testes revealed that most of the Elongin B mRNA was associated with translationally inactive, non-polysomal ribonucleoproteins. An RNA electrophoretic mobility shift assay demonstrated that the 3' untranslated region of the Elongin B transcript was bound by proteins present in testis but not liver extracts. These findings suggest that post-transcriptional regulation of Elongin B occurs in the testis, which is a common phenomenon during male germ cell development. As a major binding partner of SPAG16S, Elongin B may play an important role in spermatogenesis by modulating RNA maturation.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang da dao, Wuhan, Hubei 430030, China; and Department of Obstetrics and Gynecology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Qian Huang
- Department of Physiology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, 2 Huangjiahu xi lu, Wuhan, Hubei 430060, China
| | - Zhenyu Wang
- Department of Physiology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Department of Biochemistry, School of Medicine, Wuhan University of Science and Technology, 2 Huangjiahu xi lu, Wuhan, Hubei 430065, China
| | - Jie Zou
- Wuhan Institute of Skin Disease Prevention and Control, 64 Wusheng lu, Wuhan, Hubei 430030, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai East Hospital, 150 Jimo lu, Shanghai, China
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Department of Obstetrics and Gynecology, Wayne State University, 275E Hancock Street, Detroit, MI 48201, USA; and Corresponding author.
| |
Collapse
|
15
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|
16
|
Mutlu B, Chen HM, Gutnik S, Hall DH, Keppler-Ross S, Mango SE. Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development 2019; 146:dev174516. [PMID: 31540912 PMCID: PMC6803369 DOI: 10.1242/dev.174516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Silvia Gutnik
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
18
|
Sawyer IA, Sturgill D, Dundr M. Membraneless nuclear organelles and the search for phases within phases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1514. [DOI: 10.1002/wrna.1514] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
- Laboratory of Receptor Biology and Gene Expression National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Miroslav Dundr
- Department of Cell Biology and Anatomy, Chicago Medical School Rosalind Franklin University of Medicine and Science North Chicago Illinois
| |
Collapse
|
19
|
Puvion-Dutilleul F, Besse S, Diaz JJ, Kindbeiter K, Vigneron M, Warren SL, Kedinger C, Madjar JJ, Puvion E. Identification of transcription factories in nuclei of HeLa cells transiently expressing the Us11 gene of herpes simplex virus type 1. Gene Expr 2018; 6:315-32. [PMID: 9368102 PMCID: PMC6148282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nuclear distribution and migration of herpes simplex virus type 1 Us11 transcripts were studied in transient expression at the ultrastructural level and compared to that of RNA polymerase II protein. Transcription was monitored by autoradiography following a short pulse with tritiated uridine. Us11 transcripts accumulated mainly over the foci of intermingled RNP fibrils as demonstrated by the presence of silver grains localizing incorporated radioactive uridine superimposed to these structures in which the presence of Us11 RNA and poly(A) tails was previously demonstrated. Silver grains were also scattered over the remaining nucleoplasm but not in the clusters of interchromatin granules, and over the dense fibrillar component of the nucleolus as in control, nontransfected HeLa cells. Pulse-chase experiments revealed the transient presence of migrating RNA in the clusters of interchromatin granules. RNA polymerase II was revealed by immunogold labeling following the use of two monoclonal antibodies: mAb H5, which recognizes the hyperphosphorylated form of the carboxy-terminal domain (CTD) of the molecule, and mAb 7C2, which recognizes both its hyperphosphorylated and unphosphorylated forms. The two mAbs bind to the newly formed Us11 transcription factories and the clusters of interchromatin granules of transfected cells. In control cells, however, clusters of interchromatin granules were labeled with mAb H5 but not with mAB 7C2. Taken together, our data demonstrate the involvement of the clusters of interchromatin granules in the intranuclear migration of Us11 RNA in transient expression. They also suggest the occurrence of changes in the accessibility of the RNA polymerase II CTD upon expression of the Us11 gene after transfection by exposing some epitopes, otherwise masked in nontransfected cells.
Collapse
Affiliation(s)
- F Puvion-Dutilleul
- Laboratoire Organisation fonctionnelle du Noyau, CNRS UPR 9044, Villejuif, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Palozola KC, Liu H, Nicetto D, Zaret KS. Low-Level, Global Transcription during Mitosis and Dynamic Gene Reactivation during Mitotic Exit. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:197-205. [PMID: 29348325 DOI: 10.1101/sqb.2017.82.034280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitosis is thought to be a period of transcriptional silence due to the compact nature of mitotic chromosomes and the apparent exclusion of RNA Pol II and many transcription factors from mitotic chromatin. Yet accurate reactivation of a cell's specific gene expression program is needed to reestablish functional cell identity after mitosis. The majority of studies on protein regulation and localization during mitosis have relied extensively on antibodies and cross-linking-based approaches that are known to artifactually exclude proteins from mitotic chromatin. Here we show that RNA Pol II localization in mitosis is antibody- and fixation-dependent, and that direct assessment of transcription by pulse-labeling nascent RNA reveals global, low-level mitotic transcription. We also find a hierarchy of gene reactivation as the cells transition from mitosis to their interphase amplitude of gene expression. Resetting of gene transcription during mitotic exit is coincident with enhancer transcription. Our work thus shifts focus from assessing mitotic exit as a binary transcription switch to a more nuanced concert of transcription amplitude and enhancer usage. We suggest that understanding how gene expression patterns are conserved during mitosis rests upon deciphering how transcription is maintained by promoters.
Collapse
Affiliation(s)
- Katherine C Palozola
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Dario Nicetto
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kenneth S Zaret
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
21
|
Butler AM, Owens DA, Wang L, King ML. A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome. Development 2018; 145:dev.155978. [PMID: 29158442 DOI: 10.1242/dev.155978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Xenopus primordial germ cells (PGCs) are determined by the presence of maternally derived germ plasm. Germ plasm components both protect PGCs from somatic differentiation and begin a unique gene expression program. Segregation of the germline from the endodermal lineage occurs during gastrulation, and PGCs subsequently initiate zygotic transcription. However, the gene network(s) that operate to both preserve and promote germline differentiation are poorly understood. Here, we utilized RNA-sequencing analysis to comprehensively interrogate PGC and neighboring endoderm cell mRNAs after lineage segregation. We identified 1865 transcripts enriched in PGCs compared with endoderm cells. We next compared the PGC-enriched transcripts with previously identified maternal, vegetally enriched transcripts and found that ∼38% of maternal transcripts were enriched in PGCs, including sox7 PGC-directed sox7 knockdown and overexpression studies revealed an early requirement for sox7 in germ plasm localization, zygotic transcription and PGC number. We identified pou5f3.3 as the most highly expressed and enriched POU5F1 homolog in PGCs. We compared the Xenopus PGC transcriptome with human PGC transcripts and showed that 80% of genes are conserved, underscoring the potential usefulness of Xenopus for understanding human germline specification.
Collapse
Affiliation(s)
- Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
22
|
Deane CAS, Brown IR. Knockdown of Heat Shock Proteins HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) Sensitizes Differentiated Human Neuronal Cells to Cellular Stress. Neurochem Res 2017; 43:340-350. [PMID: 29090408 DOI: 10.1007/s11064-017-2429-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Heat shock proteins are involved in cellular repair and protective mechanisms that counter characteristic features of neurodegenerative diseases such as protein misfolding and aggregation. The HSPA (Hsp70) multigene family includes the widely studied HSPA1A (Hsp70-1) and the little studied HSPA6 (Hsp70B') which is present in the human genome and not in mouse and rat. The effect of knockdown of HSPA6 and HSPA1A expression was examined in relation to the ability of differentiated human SH-SY5Y neuronal cells to tolerate thermal stress. Low dose co-application of celastrol and arimoclomol, which induces Hsps, enhanced the ability of differentiated neurons to survive heat shock. Small interfering RNA (siRNA) knockdown of HSPA6 and HSPA1A resulted in loss of the protective effect of co-application of celastrol/arimoclomol. More pronounced effects on neuronal viability were apparent at 44 °C heat shock compared to 43 °C. siRNA knockdown suggests that HSPA6 and HSPA1A contribute to protection of differentiated human neuronal cells from cellular stress.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
23
|
Detection of RNA Polymerase II in Mouse Embryos During Zygotic Genome Activation Using Immunocytochemistry. Methods Mol Biol 2017. [PMID: 28456963 DOI: 10.1007/978-1-4939-6988-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mammalian pre-implantation embryos represent a highly dynamic experimental model for comparative studies of nuclear structure and functions in the context of gradual reactivation of transcription. Here, we present details of the methods that allow localizing RNA polymerase II in mouse pre-implantation embryos with specific antibodies, using fluorescent/confocal and electron microscopy. We stress the special aspects of immunolabeling protocols in respect to the embryonic material. We made a special emphasis on the essential steps preceding the immunocytochemical experiments. In particular, we consider the procedures of female hormonal stimulation and embryo collection. The described approaches are also applicable to study other nuclear proteins.
Collapse
|
24
|
Deane CAS, Brown IR. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress. Front Neurosci 2017; 11:227. [PMID: 28484369 PMCID: PMC5401876 DOI: 10.3389/fnins.2017.00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH (Hsp105α). The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B') is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles) that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1) and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
25
|
Oqani RK, Lin T, Lee JE, Kim SY, Sa SJ, Woo JS, Jin DI. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse. Genesis 2016; 54:470-82. [PMID: 27488304 DOI: 10.1002/dvg.22961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 11/11/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) is an RNA polymerase II kinase that phosphorylates Ser2 of the carboxyl-terminal domain and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in early developmental events. In this study, using immunocytochemical analyses, we find that the P-TEFb components, Cyclin T1, CDK9, and its T-loop phosphorylated form, are localized to nuclear speckles, as well as in nucleoli in mouse germinal vesicle oocytes. Moreover, using fluorescence in situ hybridization, we show that in absence of CDK9 activity, nucleolar integration, as well as production of 28S rRNA is impaired in oocytes and embryos. We also present evidence indicating that P-TEFb kinase activity is essential for completion of mouse oocyte maturation and embryo development. Treatment with CDK9 inhibitor, flavopiridol resulted in metaphase I arrest in maturing oocytes. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when zygotes or 2-cell embryos were treated with flavopiridol only in their G2 phase of the cell cycle, development to the blastocyst stage was impaired. Inhibition of the CDK9 activity after embryonic genome activation resulted in failure to form normal blastocysts and aberrant phosphorylation of RNA polymerase II CTD. In all stages analyzed, treatment with flavopiridol abrogated global transcriptional activity. Collectively, our data suggest that P-TEFb kinase activity is crucial for oocyte maturation, embryo development, and regulation of global RNA transcription in mouse early development.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tao Lin
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Jin Sa
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Korea
| | - Je Seok Woo
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Korea
| | - Dong Il Jin
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
26
|
Liu H, Nonomura KI. A wide reprogramming of histone H3 modifications during male meiosis I in rice is dependent on the Argonaute protein MEL1. J Cell Sci 2016; 129:3553-3561. [PMID: 27521428 DOI: 10.1242/jcs.184937] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
The roles of epigenetic mechanisms, including small-RNA-mediated silencing, in plant meiosis largely remain unclear, despite their importance in plant reproduction. This study unveiled that rice chromosomes are reprogrammed during the premeiosis-to-meiosis transition in pollen mother cells (PMCs). This large-scale meiotic chromosome reprogramming (LMR) continued throughout meiosis I, during which time H3K9 dimethylation (H3K9me2) was increased, and H3K9 acetylation and H3S10 phosphorylation were broadly decreased, with an accompanying immunostaining pattern shift of RNA polymerase II. LMR was dependent on the rice Argonaute protein, MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), which is specifically expressed in germ cells prior to meiosis, because LMR was severely diminished in mel1 mutant anthers. Pivotal meiotic events, such as pre-synaptic centromere association, DNA double-strand break initiation and synapsis of homologous chromosomes, were also disrupted in this mutant. Interestingly, and as opposed to the LMR loss in most chromosomal regions, aberrant meiotic protein loading and hypermethylation of H3K9 emerged on the nucleolar organizing region in the mel1 PMCs. These results suggest that MEL1 plays important roles in epigenetic LMR to promote faithful homologous recombination and synapsis during rice meiosis.
Collapse
Affiliation(s)
- Hua Liu
- Experimental Farm, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan Department of Life Science, Graduate University for Advanced Studies/SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
27
|
Kobrinsky E. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation. Curr Mol Pharmacol 2016; 8:54-60. [PMID: 25966705 DOI: 10.2174/1874467208666150507093601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/06/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Evgeny Kobrinsky
- National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD, 21224, US.
| |
Collapse
|
28
|
Serebryannyy LA, Parilla M, Annibale P, Cruz CM, Laster K, Gratton E, Kudryashov D, Kosak ST, Gottardi CJ, de Lanerolle P. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci 2016; 129:3412-25. [PMID: 27505898 DOI: 10.1242/jcs.195867] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Megan Parilla
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paolo Annibale
- Laboratory of Fluorescence Dynamics, University of California Irvine, Irvine, CA 92697, USA
| | - Christina M Cruz
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kyle Laster
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, University of California Irvine, Irvine, CA 92697, USA
| | - Dmitri Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | - Cara J Gottardi
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Trump BF. Mechanisms of Toxicity and Carcinogenesis. Toxicol Pathol 2016. [DOI: 10.1177/019262339502300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Onyango DO, Howard SM, Neherin K, Yanez DA, Stark JM. Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination. Nucleic Acids Res 2016; 44:5702-16. [PMID: 27084940 PMCID: PMC4937314 DOI: 10.1093/nar/gkw275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/05/2016] [Indexed: 12/15/2022] Open
Abstract
We examined the influence of the tetratricopeptide repeat factor XAB2 on chromosomal break repair, and found that XAB2 promotes end resection that generates the 3′ ssDNA intermediate for homologous recombination (HR). Namely, XAB2 is important for chromosomal double-strand break (DSB) repair via two pathways of HR that require end resection as an intermediate step, end resection of camptothecin (Cpt)-induced DNA damage, and RAD51 recruitment to ionizing radiation induced foci (IRIF), which requires end resection. Furthermore, XAB2 mediates specific aspects of the DNA damage response associated with end resection proficiency: CtIP hyperphosphorylation induced by Cpt and BRCA1 IRIF. XAB2 also promotes histone acetylation events linked to HR proficiency. From truncation mutation analysis, the capacity for XAB2 to promote HR correlates with its ability to form a complex with ISY1 and PRP19, which show a similar influence as XAB2 on HR. This XAB2 complex localizes to punctate structures consistent with interchromatin granules that show a striking adjacent-localization to the DSB marker γH2AX. In summary, we suggest that the XAB2 complex mediates DNA damage response events important for the end resection step of HR, and speculate that its adjacent-localization relative to DSBs marked by γH2AX is important for this function.
Collapse
Affiliation(s)
- David O Onyango
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Sean M Howard
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Kashfia Neherin
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA Department of Biology, California State University, San Bernardino, CA 92407 USA; current address University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Diana A Yanez
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, 1500 E Duarte Rd., Duarte, CA 91010, USA Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
31
|
Singh AK, Lakhotia SC. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Cell Stress Chaperones 2016; 21:105-120. [PMID: 26386576 PMCID: PMC4679734 DOI: 10.1007/s12192-015-0644-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 02/02/2023] Open
Abstract
A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.
Collapse
Affiliation(s)
- Anand K Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
32
|
Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S. MALAT1 long non-coding RNA in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:192-9. [PMID: 26434412 DOI: 10.1016/j.bbagrm.2015.09.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 02/09/2023]
Abstract
A recent massive parallel sequencing analysis has shown the fact that more than 80% of the human genome is transcribed into RNA. Among many kinds of the non-protein coding RNAs, we focus on the metastasis associated lung adenocarcinoma transcript 1 (MALAT1) that is a long non-coding RNA upregulated in metastatic carcinoma cells. Two molecular functions of MALAT1 have been proposed, one is the control of alternative splicing and the other is the transcriptional regulation. In this review, we document the molecular characteristics and functions of MALAT1 and shed light on the implication in the molecular pathology of various cancers. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Chemical Genetics Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Sharif SR, Lee H, Islam MA, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol Cells 2015; 38:402-8. [PMID: 25921606 PMCID: PMC4443281 DOI: 10.14348/molcells.2015.2242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/27/2022] Open
Abstract
Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Md. Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 614-735,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
34
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Padmanabhan J, Brown KR, Padilla A, Shelanski ML. Functional role of RNA polymerase II and P70 S6 kinase in KCl withdrawal-induced cerebellar granule neuron apoptosis. J Biol Chem 2015; 290:5267-79. [PMID: 25568312 DOI: 10.1074/jbc.m114.575225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KCl withdrawal-induced apoptosis in cerebellar granule neurons is associated with aberrant cell cycle activation, and treatment with cyclin-dependent kinase (Cdk) inhibitors protects cells from undergoing apoptosis. Because the Cdk inhibitor flavopiridol is known to inhibit RNA polymerase II (Pol II)-dependent transcription elongation by inhibiting the positive transcription elongation factor b (P-TEFb, a complex of CDK9 and cyclin T), we examined whether inhibition of RNA Pol II protects neurons from apoptosis. Treatment of neurons with 5, 6-dichloro-1-β-D-ribobenzimidazole (DRB), an RNA Pol II-dependent transcription elongation inhibitor, and flavopiridol inhibited phosphorylation and activation of Pol II and protected neurons from undergoing apoptosis. In addition to Pol II, neurons subjected to KCl withdrawal showed increased phosphorylation and activation of p70 S6 kinase, which was inhibited by both DRB and flavopiridol. Immunostaining analysis of the neurons deprived of KCl showed increased nuclear levels of phospho-p70 S6 kinase, and neurons protected with DRB and flavopiridol showed accumulation of the kinase into large spliceosome assembly factor-positive speckle domains within the nuclei. The formation of these foci corresponded with cell survival, and removal of the inhibitors resulted in dispersal of the speckles into smaller foci with subsequent apoptosis induction. Because p70 S6 kinase is known to induce translation of mRNAs containing a 5'-terminal oligopyrimidine tract, our data suggest that transcription and translation of this subset of mRNAs may contribute to KCl withdrawal-induced apoptosis in neurons.
Collapse
Affiliation(s)
- Jaya Padmanabhan
- From the Department of Molecular Medicine, University of South Florida Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613 and
| | - Kristy R Brown
- the Department of Pathology and Cell Biology, Taub Center for Alzheimer's Disease, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Amelia Padilla
- From the Department of Molecular Medicine, University of South Florida Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613 and
| | - Michael L Shelanski
- the Department of Pathology and Cell Biology, Taub Center for Alzheimer's Disease, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
36
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 2014; 131:743-54. [DOI: 10.1111/jnc.12970] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
38
|
Nuclear distribution of RNA polymerase II and mRNA processing machinery in early mammalian embryos. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681596. [PMID: 24868542 PMCID: PMC4020508 DOI: 10.1155/2014/681596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Spatial distribution of components of nuclear metabolism provides a significant impact on regulation of the processes of gene expression. While distribution of the key nuclear antigens and their association with the defined nuclear domains were thoroughly traced in mammalian somatic cells, similar data for the preimplantation embryos are scanty and fragmental. However, the period of cleavage is characterized by the most drastic and dynamic nuclear reorganizations accompanying zygotic gene activation. In this minireview, we try to summarize the results of studies concerning distribution of major factors involved in RNA polymerase II-dependent transcription, pre-mRNA splicing mRNA export that have been carried out on early embryos of mammals.
Collapse
|
39
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
40
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
41
|
An immunocytochemical study of interchromatin granule clusters in early mouse embryos. BIOMED RESEARCH INTERNATIONAL 2013; 2013:931564. [PMID: 24106723 PMCID: PMC3784238 DOI: 10.1155/2013/931564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022]
Abstract
Interchromatin granule clusters (IGCs) are universal nuclear domains. Their molecular composition and functions were studied in detail in somatic cells. Here, we studied IGCs in the nuclei of early mouse embryos during zygotic gene activation (ZGA). We found that the size of IGCs gradually increases during realization of ZGA events. Using immunocytochemical approaches, we showed that the molecular composition of IGCs is also modified in mouse embryos. The hyperphosphorylated form of RNA polymerase II and the transcription factor TFIID have been revealed in IGCs before the end of ZGA. Association of these factors with IGCs became more noticeable during ZGA realization. Our data suggest that IGCs in early mouse embryos have some functional peculiarities connected most probably with IGC formation de novo. We believe that IGCs in early mouse embryos not only are storage sites of splicing factors but also may be involved in mRNA metabolism and represent the multifunctional nuclear domains.
Collapse
|
42
|
Abstract
We previously demonstrated that sperm heads from amphibians (Xenopus and Rana) and zebrafish (Danio) could form giant lampbrush chromosomes when injected into the nucleus of amphibian oocytes. However, similar experiments with mammalian sperm heads were unsuccessful. Here, we describe a slightly modified procedure and demonstrate that human sperm heads can form giant lampbrush chromosomes when injected into the oocyte nucleus of the frog Xenopus laevis or the newt Notophthalmus viridescens. Human and other mammalian chromosomes do not form recognizable lampbrush chromosomes in their own oocytes or in any somatic cells. These experiments thus demonstrate that the lampbrush condition is an inducible state and that the amphibian oocyte nucleus contains all factors required to remodel the inactive chromatin of a mammalian sperm into a transcriptionally active state. They also demonstrate that absence of lampbrush chromosomes from human oocytes must relate to specific features of mammalian oogenesis, not to permanent genetic or epigenetic changes in the chromatin.
Collapse
|
43
|
Kawauchi J, Inoue M, Fukuda M, Uchida Y, Yasukawa T, Conaway RC, Conaway JW, Aso T, Kitajima S. Transcriptional properties of mammalian elongin A and its role in stress response. J Biol Chem 2013; 288:24302-15. [PMID: 23828199 DOI: 10.1074/jbc.m113.496703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Elongin A was shown previously to be capable of potently activating the rate of RNA polymerase II (RNAPII) transcription elongation in vitro by suppressing transient pausing by the enzyme at many sites along DNA templates. The role of Elongin A in RNAPII transcription in mammalian cells, however, has not been clearly established. In this report, we investigate the function of Elongin A in RNAPII transcription. We present evidence that Elongin A associates with the IIO form of RNAPII at sites of newly transcribed RNA and is relocated to dotlike domains distinct from those containing RNAPII when cells are treated with the kinase inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole. Significantly, Elongin A is required for maximal induction of transcription of the stress response genes ATF3 and p21 in response to several stimuli. Evidence from structure-function studies argues that Elongin A transcription elongation activity, but not its ubiquitination activity, is most important for its function in induction of transcription of ATF3 and p21. Taken together, our data provide new insights into the function of Elongin A in RNAPII transcription and bring to light a previously unrecognized role for Elongin A in the regulation of stress response genes.
Collapse
Affiliation(s)
- Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Werwein E, Dzuganova M, Usadel C, Klempnauer KH. B-Myb switches from Cyclin/Cdk-dependent to Jnk- and p38 kinase-dependent phosphorylation and associates with SC35 bodies after UV stress. Cell Death Dis 2013; 4:e511. [PMID: 23449447 PMCID: PMC3734824 DOI: 10.1038/cddis.2013.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
B-Myb is a highly conserved member of the Myb transcription factor family that has essential roles in cell-cycle progression. Recent work has suggested that B-Myb is also involved in the cellular DNA-damage response. Here, we have investigated the fate of B-Myb in UV-irradiated cells. UV stress leads to the appearance of phosphorylated B-Myb in nuclear SC35 speckles during transcriptional shutdown. Furthermore, we show that UV irradiation leads to a change of the phosphorylation pattern of B-Myb, which is caused by a switch from Cyclin/Cdk-dependent to Jnk and p38 kinase-dependent phosphorylation. Taken together, we have identified Jnk and p38 kinase as novel regulators of B-Myb and established the localization of phosphorylated B-Myb in SC35 speckles as a potential novel regulatory mechanism for B-Myb in UV irradiated cells.
Collapse
Affiliation(s)
- E Werwein
- Institut für Biochemie, Wilhelm-Klemm-Straße 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
45
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
46
|
Möller A, Xie SQ, Hosp F, Lang B, Phatnani HP, James S, Ramirez F, Collin GB, Naggert JK, Babu MM, Greenleaf AL, Selbach M, Pombo A. Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease. Mol Cell Proteomics 2012; 11:M111.011767. [PMID: 22199231 PMCID: PMC3433901 DOI: 10.1074/mcp.m111.011767] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/19/2011] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology.
Collapse
Affiliation(s)
- André Möller
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Sheila Q. Xie
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Fabian Hosp
- §Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Benjamin Lang
- ¶MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hemali P. Phatnani
- ‖Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Sonya James
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | | | | | | | - M. Madan Babu
- ¶MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Arno L. Greenleaf
- ‖Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Matthias Selbach
- §Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Ana Pombo
- From the ‡MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
47
|
Oqani RK, Zhang JY, Lee MG, Diao YF, Jin DI. Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:789-93. [PMID: 25049627 PMCID: PMC4093084 DOI: 10.5713/ajas.2011.11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/30/2012] [Accepted: 01/18/2012] [Indexed: 11/27/2022]
Abstract
Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, α-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.
Collapse
|
48
|
The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat Commun 2012; 3:766. [DOI: 10.1038/ncomms1766] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/29/2012] [Indexed: 12/18/2022] Open
|
49
|
Bojić T, Beeharry Y, Zhang DJ, Pelchat M. Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J Gen Virol 2012; 93:1591-1600. [PMID: 22422064 DOI: 10.1099/vir.0.041574-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.e. YSPTSPS) located at the carboxy-terminal domain of the largest subunit of RNAP II, we established the interaction of tomato RNAP II with PSTVd RNA and showed that RNAP II associates with the left terminal domain of PSTVd (+) RNA. RNAP II did not interact with any of several PSTVd (-) RNAs tested. Deletion and site-directed mutagenesis of a shortened model PSTVd (+) RNA fragment were used to identify the role of specific nucleotides and structural motifs in this interaction. Our results provide evidence for the interaction of a RNAP II complex from a natural host with the rod-like conformation of the left terminal domain of PSTVd (+) RNA.
Collapse
Affiliation(s)
- Teodora Bojić
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Yasnee Beeharry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Da Jiang Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
50
|
Sathyan KM, Shen Z, Tripathi V, Prasanth KV, Prasanth SG. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J Cell Sci 2012; 124:3149-63. [PMID: 21914818 DOI: 10.1242/jcs.086603] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.
Collapse
Affiliation(s)
- Kizhakke M Sathyan
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|