1
|
Ng HY, Whelpley DH, Adly AN, Maxwell RA, Morgan DO. Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing. Nat Commun 2025; 16:4281. [PMID: 40341598 PMCID: PMC12062237 DOI: 10.1038/s41467-025-59700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Cell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Mutation of the PP reduces multi-site phosphorylation of CDK substrates in vitro, including the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome and the Bud6 and Spa2 subunits of the polarisome. We conclude that the cyclin PP, like Cks1, controls the pattern of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.
Collapse
Affiliation(s)
- Henry Y Ng
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Devon H Whelpley
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Armin N Adly
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - David O Morgan
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ng HY, Whelpley DH, Adly AN, Maxwell RA, Morgan DO. Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.28.582599. [PMID: 38464173 PMCID: PMC10925351 DOI: 10.1101/2024.02.28.582599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Mutation of the PP reduces multi-site phosphorylation of CDK substrates in vitro, including the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome and the Bud6 and Spa2 subunits of the polarisome. We conclude that the cyclin PP, like Cks1, controls the pattern of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.
Collapse
Affiliation(s)
- Henry Y. Ng
- Department of Physiology, University of California San Francisco, San Francisco CA
| | - Devon H. Whelpley
- Department of Physiology, University of California San Francisco, San Francisco CA
| | - Armin N. Adly
- Department of Physiology, University of California San Francisco, San Francisco CA
| | - Robert A. Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - David O. Morgan
- Department of Physiology, University of California San Francisco, San Francisco CA
| |
Collapse
|
3
|
Stier AB, Bonaiuti P, Juhász J, Gross F, Ciliberto A. lncreased risk of slippage upon disengagement of the mitotic checkpoint. PLoS Comput Biol 2025; 21:e1012879. [PMID: 40106474 PMCID: PMC11981154 DOI: 10.1371/journal.pcbi.1012879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/09/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Drugs that impair microtubule dynamics alter microtubule-kinetochore attachment and invoke the mitotic checkpoint which arrests cells in mitosis. The arrest can last for hours, but it is leaky: cells adapt (i.e., slip out of it) and exit from mitosis. Here, we investigate the mechanism that allows cells to escape, and whether it is possible to prevent it. Based on a model of the mitotic checkpoint which includes the presence of a positive feedback loop, the escape from the arrest is described as a stochastic transition driven by fluctuations of molecular components from a checkpoint ON to a checkpoint OFF state. According to the model, drug removal further facilitates adaptation, a prediction we confirmed in budding yeast. The model suggests two ways to avoid adaptation: inhibition of APC/C and strengthening the mitotic checkpoint. We confirmed experimentally that both alterations decrease the chance of cells slipping out of mitosis, during a prolonged arrest and after washing out the drug. Our results may be relevant for increasing the efficiency of microtubule depolymerizing drugs.
Collapse
Affiliation(s)
- Alma Beatrix Stier
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Paolo Bonaiuti
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - János Juhász
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Fridolin Gross
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France
| | - Andrea Ciliberto
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
4
|
Vazquez-Fernandez E, Yang J, Zhang Z, Andreeva AE, Emsley P, Barford D. A comparative study of the cryo-EM structures of Saccharomyces cerevisiae and human anaphase-promoting complex/cyclosome (APC/C). eLife 2024; 13:RP100821. [PMID: 39401078 PMCID: PMC11473103 DOI: 10.7554/elife.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that controls progression through the cell cycle by orchestrating the timely proteolysis of mitotic cyclins and other cell cycle regulatory proteins. Although structures of multiple human APC/C complexes have been extensively studied over the past decade, the Saccharomyces cerevisiae APC/C has been less extensively investigated. Here, we describe medium resolution structures of three S. cerevisiae APC/C complexes: unphosphorylated apo-APC/C and the ternary APC/CCDH1-substrate complex, and phosphorylated apo-APC/C. Whereas the overall architectures of human and S. cerevisiae APC/C are conserved, as well as the mechanism of CDH1 inhibition by CDK-phosphorylation, specific variations exist, including striking differences in the mechanism of coactivator-mediated stimulation of E2 binding, and the activation of APC/CCDC20 by phosphorylation. In contrast to human APC/C in which coactivator induces a conformational change of the catalytic module APC2:APC11 to allow E2 binding, in S. cerevisiae apo-APC/C the catalytic module is already positioned to bind E2. Furthermore, we find no evidence of a phospho-regulatable auto-inhibitory segment of APC1, that in the unphosphorylated human APC/C, sterically blocks the CDC20C-box binding site of APC8. Thus, although the functions of APC/C are conserved from S. cerevisiae to humans, molecular details relating to their regulatory mechanisms differ.
Collapse
Affiliation(s)
| | - Jing Yang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ziguo Zhang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Paul Emsley
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David Barford
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
5
|
Cirillo L, Young R, Veerapathiran S, Roberti A, Martin M, Abubacar A, Perosa C, Coates C, Muhammad R, Roumeliotis TI, Choudhary JS, Alfieri C, Pines J. Spatial control of the APC/C ensures the rapid degradation of cyclin B1. EMBO J 2024; 43:4324-4355. [PMID: 39143240 PMCID: PMC11445581 DOI: 10.1038/s44318-024-00194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.
Collapse
Affiliation(s)
- Luca Cirillo
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Rose Young
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | | | - Annalisa Roberti
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Molly Martin
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Azzah Abubacar
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Camilla Perosa
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Catherine Coates
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Reyhan Muhammad
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodoros I Roumeliotis
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Claudio Alfieri
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| | - Jonathon Pines
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
6
|
Rojas J, Oz T, Jonak K, Lyzak O, Massaad V, Biriuk O, Zachariae W. Spo13/MEIKIN ensures a Two-Division meiosis by preventing the activation of APC/C Ama1 at meiosis I. EMBO J 2023; 42:e114288. [PMID: 37728253 PMCID: PMC10577557 DOI: 10.15252/embj.2023114288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.
Collapse
Affiliation(s)
- Julie Rojas
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Tugce Oz
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Katarzyna Jonak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Oleksii Lyzak
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Vinal Massaad
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Olha Biriuk
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Zachariae
- Laboratory of Chromosome BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
7
|
Cairo G, Greiwe C, Jung GI, Blengini C, Schindler K, Lacefield S. Distinct Aurora B pools at the inner centromere and kinetochore have different contributions to meiotic and mitotic chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527197. [PMID: 36778459 PMCID: PMC9915740 DOI: 10.1101/2023.02.05.527197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore. We studied how these pathways contribute to anaphase onset timing and correction of kinetochore-microtubule attachments in budding yeast meiosis and mitosis. We find that the pool localized by the Bub1/Bub3 pathway sets the normal duration of meiosis and mitosis, in differing ways. Our meiosis data suggests that disruption of this pathway leads to PP1 kinetochore localization, which dephosphorylates Cdc20 for premature anaphase onset. For error correction, the Bub1/Bub3 and COMA pathways are individually important in meiosis but compensatory in mitosis. Finally, we find that the haspin and Bub1/3 pathways function together to ensure error correction in mouse oogenesis. Our results suggest that each recruitment pathway localizes spatially distinct kinetochore-localized Aurora B/C pools that function differently between meiosis and mitosis.
Collapse
Affiliation(s)
- Gisela Cairo
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| | - Cora Greiwe
- Indiana University, Department of Biology, Bloomington, IN USA
| | - Gyu Ik Jung
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | | | - Karen Schindler
- Rutgers University, Department of Genetics, Piscataway, NJ USA
| | - Soni Lacefield
- Indiana University, Department of Biology, Bloomington, IN USA
- Geisel School of Medicine at Dartmouth, Department of Biochemistry and Cell Biology, Hanover, NH USA
| |
Collapse
|
8
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
9
|
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW. Targeting Cdc20 for cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188824. [DOI: 10.1016/j.bbcan.2022.188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
10
|
Shevah-Sitry D, Miniowitz-Shemtov S, Teichner A, Kaisari S, Hershko A. Role of phosphorylation of Cdc20 in the regulation of the action of APC/C in mitosis. Proc Natl Acad Sci U S A 2022; 119:e2210367119. [PMID: 36001690 PMCID: PMC9436321 DOI: 10.1073/pnas.2210367119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for the control of mitosis, and its activity is subject to tight regulation. In early mitosis, APC/C is inhibited by the mitotic checkpoint system, but subsequently it regains activity and promotes metaphase-anaphase transition by targeting cyclin B and securin for degradation. The phosphorylation of APC/C by the mitotic protein kinase Cdk1-cyclin B facilitates its interaction with its coactivator Cdc20, while the phosphorylation of Cdc20 inhibits its binding to APC/C. This raises the question of how Cdc20 binds to APC/C under conditions of high Cdk1 activity. It seemed possible that the opposing action of protein phosphatases produces a fraction of unphosphorylated Cdc20 that binds to APC/C. We found, however, that while inhibitors of protein phosphatases PP2A and PP1 increased the overall phosphorylation of Cdc20 in anaphase extracts from Xenopus eggs, they did not decrease the levels of Cdc20 bound to APC/C. Searching for alternative mechanisms, we found that following the binding of Cdc20 to APC/C, it became significantly protected against phosphorylation by Cdk1. Protection was mainly at threonine sites at the N-terminal region of Cdc20, known to affect its interaction with APC/C. A model is proposed according to which a pool of unphosphorylated Cdc20, originating from initial stages of mitosis or from phosphatase action, combines with phosphorylated APC/C and thus becomes stabilized against further phosphorylation, possibly by steric hindrance of Cdk1 action. This pool of APCCdc20 appears to be required for the regulation of APC/C activity at different stages of mitosis.
Collapse
Affiliation(s)
- Danielle Shevah-Sitry
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Shirly Miniowitz-Shemtov
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Adar Teichner
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sharon Kaisari
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Avram Hershko
- Department of Biochemistry, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
11
|
Fujimitsu K, Yamano H. Dynamic regulation of mitotic ubiquitin ligase APC/C by coordinated Plx1 kinase and PP2A phosphatase action on a flexible Apc1 loop. EMBO J 2021; 40:e107516. [PMID: 34291488 PMCID: PMC8441438 DOI: 10.15252/embj.2020107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin-dependent kinase 1 (Cdk1) promotes Cdc20 co-activator loading in mitosis to form active APC/C-Cdc20. However, detailed phospho-regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo-like kinase (Plx1) and PP2A-B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1-loop500 ) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1-loop500 in a phosphorylation-dependent manner and promotes the formation of APC/C-Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A-B56 is recruited to the Apc1-loop500 and differentially promotes dissociation of Plx1 and PP2A-B56 through dephosphorylation of Plx1-binding sites. Stable Plx1 binding, which prevents PP2A-B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1-loop500 is controlled by distant Apc3-loop phosphorylation. Our study suggests that phosphorylation-dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.
Collapse
Affiliation(s)
- Kazuyuki Fujimitsu
- Cell Cycle Control GroupUCL Cancer InstituteUniversity College LondonLondonUK
| | - Hiroyuki Yamano
- Cell Cycle Control GroupUCL Cancer InstituteUniversity College LondonLondonUK
| |
Collapse
|
12
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
13
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
14
|
Katebi A, Kohar V, Lu M. Random Parametric Perturbations of Gene Regulatory Circuit Uncover State Transitions in Cell Cycle. iScience 2020; 23:101150. [PMID: 32450514 PMCID: PMC7251928 DOI: 10.1016/j.isci.2020.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Many biological processes involve precise cellular state transitions controlled by complex gene regulation. Here, we use budding yeast cell cycle as a model system and explore how a gene regulatory circuit encodes essential information of state transitions. We present a generalized random circuit perturbation method for circuits containing heterogeneous regulation types and its usage to analyze both steady and oscillatory states from an ensemble of circuit models with random kinetic parameters. The stable steady states form robust clusters with a circular structure that are associated with cell cycle phases. This circular structure in the clusters is consistent with single-cell RNA sequencing data. The oscillatory states specify the irreversible state transitions along cell cycle progression. Furthermore, we identify possible mechanisms to understand the irreversible state transitions from the steady states. We expect this approach to be robust and generally applicable to unbiasedly predict dynamical transitions of a gene regulatory circuit.
Collapse
Affiliation(s)
- Ataur Katebi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kohar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
15
|
Yeast Sphingolipid Phospholipase Gene ISC1 Regulates the Spindle Checkpoint by a CDC55-Dependent Mechanism. Mol Cell Biol 2020; 40:MCB.00340-19. [PMID: 32205408 DOI: 10.1128/mcb.00340-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
Defects in the spindle assembly checkpoint (SAC) can lead to aneuploidy and cancer. Sphingolipids have important roles in many cellular functions, including cell cycle regulation and apoptosis. However, the specific mechanisms and functions of sphingolipids in cell cycle regulation have not been elucidated. Using analysis of concordance for synthetic lethality for the yeast sphingolipid phospholipase ISC1, we identified two groups of genes. The first comprises genes involved in chromosome segregation and stability (CSM3, CTF4, YKE2, DCC1, and GIM4) as synthetically lethal with ISC1 The second group, to which ISC1 belongs, comprises genes involved in the spindle checkpoint (BUB1, MAD1, BIM1, and KAR3), and they all share the same synthetic lethality with the first group. We demonstrate that spindle checkpoint genes act upstream of Isc1, and their deletion phenocopies that of ISC1 Reciprocally, ISC1 deletion mutants were sensitive to benomyl, indicating a SAC defect. Similar to BUB1 deletion, ISC1 deletion prevents spindle elongation in hydroxyurea-treated cells. Mechanistically, PP2A-Cdc55 ceramide-activated phosphatase was found to act downstream of Isc1, thus coupling the spindle checkpoint genes and Isc1 to CDC55-mediated nuclear functions.
Collapse
|
16
|
Zhao Y, Wang D, Zhang Z, Lu Y, Yang X, Ouyang Q, Tang C, Li F. Critical slowing down and attractive manifold: A mechanism for dynamic robustness in the yeast cell-cycle process. Phys Rev E 2020; 101:042405. [PMID: 32422801 DOI: 10.1103/physreve.101.042405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/13/2020] [Indexed: 11/07/2022]
Abstract
Biological processes that execute complex multiple functions, such as the cell cycle, must ensure the order of sequential events and maintain dynamic robustness against various fluctuations. Here, we examine the mechanisms and fundamental structure that achieve these properties in the cell cycle of the budding yeast Saccharomyces cerevisiae. We show that this process behaves like an excitable system containing three well-decoupled saddle-node bifurcations to execute DNA replication and mitosis events. The yeast cell-cycle regulatory network can be divided into three modules-the G1/S phase, early M phase, and late M phase-wherein both positive feedback loops in each module and interactions among modules play important roles. Specifically, when the cell-cycle process operates near the critical points of the saddle-node bifurcations, a critical slowing down effect takes place. Such interregnum then allows for an attractive manifold and sufficient duration for cell-cycle events, within which to assess the completion of DNA replication and mitosis, e.g., spindle assembly. Moreover, such arrangement ensures that any fluctuation in an early module or event will not transmit to a later module or event. Thus, our results suggest a possible dynamical mechanism of the cell-cycle process to ensure event order and dynamic robustness and give insight into the evolution of eukaryotic cell-cycle processes.
Collapse
Affiliation(s)
- Yao Zhao
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Dedi Wang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhiwen Zhang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qi Ouyang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Chao Tang
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Fangting Li
- School of Physics, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Abstract
The goal of mitosis is to form two daughter cells each containing one copy of each mother cell chromosome, replicated in the previous S phase. To achieve this, sister chromatids held together back-to-back at their primary constriction, the centromere, have to interact with microtubules of the mitotic spindle so that each chromatid takes connections with microtubules emanating from opposite spindle poles (we will refer to this condition as bipolar attachment). Only once all replicated chromosomes have reached bipolar attachments can sister chromatids lose cohesion with each other, at the onset of anaphase, and move toward opposite spindle poles, being segregated into what will soon become the daughter cell nucleus. Prevention of errors in chromosome segregation is granted by a safeguard mechanism called Spindle Assembly Checkpoint (SAC). Until all chromosomes are bipolarly oriented at the equator of the mitotic spindle, the SAC prevents loss of sister chromatid cohesion, thus anaphase onset, and maintains the mitotic state by inhibiting inactivation of the major M phase promoting kinase, the cyclin B-cdk1 complex (Cdk1). Here, we review recent mechanistic insights about the circuitry that links Cdk1 to the SAC to ensure correct achievement of the goal of mitosis.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,DMMBM, University of Naples "Federico II", Naples, 80131, Italy
| | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
18
|
PP2A Functions during Mitosis and Cytokinesis in Yeasts. Int J Mol Sci 2019; 21:ijms21010264. [PMID: 31906018 PMCID: PMC6981662 DOI: 10.3390/ijms21010264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.
Collapse
|
19
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
20
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
21
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
22
|
Haliki E, Alpagut Keskin N, Masalci O. Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae. J Biol Phys 2019; 45:235-251. [PMID: 31175490 DOI: 10.1007/s10867-019-09526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/09/2019] [Indexed: 10/26/2022] Open
Abstract
Centromeres, a highly conserved locus of eukaryotic chromosomes, have critical function for genome stability and integrity. Because their centromeric DNA sequences are necessary and sufficient for kinetochore recruitment and DNA segregation, point centromeres of Saccharomyces cerevisiae chromosomes provide an attractive system for the study of the regulation of centromere function. Using the mathematical model of Boolean gene regulatory networks, the gene regulatory dynamics of centromere region of S. cerevisiae (budding yeast), which is actively involved in the cell-cycle, has been examined. A gene regulatory network containing the relevant centromere genes of the model organism from biological databases was established and all possible cellular phenotypes subjected to a synchronous gene regulation and attracted to several basins. Gene expression in the largest attractor was compared with the biological data by obtaining changes in the cell-cycle. We show that the model for centromere function recovers a single cyclic attractor. The trajectory flow diagram plotted over all initial conditions of the system also shows good correspondence with the cell-cycle phases. Although other upstream signals are possibly involved in the regulation of centromere genes, proposed interactions with selected cell-cycle genes were sufficient to recover whole cell-cycle process. To truly clarify these proposed regulatory interactions of candidate genes for centromere function, profiling and analyzing their expression levels over time with expanded nodes/edges are required. Moreover, a previously modeled gene knock-down mechanism applied to the network and robustness versus knock-down was interpreted based on the obtained consequences.
Collapse
|
23
|
Corno A, Chiroli E, Gross F, Vernieri C, Matafora V, Maffini S, Cosentino Lagomarsino M, Bachi A, Ciliberto A. Cellular response upon proliferation in the presence of an active mitotic checkpoint. Life Sci Alliance 2019; 2:2/3/e201900380. [PMID: 31068378 PMCID: PMC6507650 DOI: 10.26508/lsa.201900380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
Cells that replicate with an active mitotic checkpoint remain capable to mount multiple times an efficient arrest, are bigger than unperturbed cells, rely more heavily on Cdh1, and have an altered protein expression profile. Eukaryotic cells treated with microtubule-targeting agents activate the spindle assembly checkpoint to arrest in mitosis and prevent chromosome mis-segregation. A fraction of mitotically arrested cells overcomes the block and proliferates even under persistent checkpoint-activating conditions. Here, we asked what allows proliferation in such unfavourable conditions. We report that yeast cells are delayed in mitosis at each division, implying that their spindle assembly checkpoint remains responsive. The arrest causes their cell cycle to be elongated and results in a size increase. Growth saturates at mitosis and correlates with the repression of various factors involved in translation. Contrary to unperturbed cells, growth of cells with an active checkpoint requires Cdh1. This peculiar cell cycle correlates with global changes in protein expression whose signatures partly overlap with the environmental stress response. Hence, cells dividing with an active checkpoint develop recognisable specific traits that allow them to successfully complete cell division notwithstanding a constant mitotic checkpoint arrest. These properties distinguish them from unperturbed cells. Our observation may have implications for the identification of new therapeutic windows and targets in tumors.
Collapse
Affiliation(s)
- Andrea Corno
- Istituto Firc di Oncologia Molecolare, Milan, Italy
| | | | | | - Claudio Vernieri
- Istituto Firc di Oncologia Molecolare, Milan, Italy.,Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Angela Bachi
- Istituto Firc di Oncologia Molecolare, Milan, Italy
| | - Andrea Ciliberto
- Istituto Firc di Oncologia Molecolare, Milan, Italy .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| |
Collapse
|
24
|
Li Y, Wang L, Zhang L, He Z, Feng G, Sun H, Wang J, Li Z, Liu C, Han J, Mao J, Li P, Yuan X, Jiang L, Zhang Y, Zhou Q, Li W. Cyclin B3 is required for metaphase to anaphase transition in oocyte meiosis I. J Cell Biol 2019; 218:1553-1563. [PMID: 30770433 PMCID: PMC6504906 DOI: 10.1083/jcb.201808088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Meiosis with a single round of DNA replication and two successive rounds of chromosome segregation requires specific cyclins associated with cyclin-dependent kinases (CDKs) to ensure its fidelity. But how cyclins control the distinctive meiosis is still largely unknown. In this study, we explored the role of cyclin B3 in female meiosis by generating Ccnb3 mutant mice via CRISPR/Cas9. Ccnb3 mutant oocytes characteristically arrested at metaphase I (MetI) with normal spindle assembly and lacked enough anaphase-promoting complex/cyclosome (APC/C) activity, which is spindle assembly checkpoint (SAC) independent, to initiate anaphase I (AnaI). Securin siRNA or CDK1 inhibitor supplements rescued the MetI arrest. Furthermore, CCNB3 directly interacts with CDK1 to exert kinase function. Besides, the MetI arrest oocytes had normal development after intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA), along with releasing the sister chromatids, which implies that Ccnb3 exclusively functioned in meiosis I, rather than meiosis II. Our study sheds light on the specific cell cycle control of cyclins in meiosis.
Collapse
Affiliation(s)
- Yufei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengquan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiabao Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Xuewei Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Liyuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
26
|
Kelliher CM, Foster MW, Motta FC, Deckard A, Soderblom EJ, Moseley MA, Haase SB. Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 2018; 29:2644-2655. [PMID: 30207828 PMCID: PMC6249835 DOI: 10.1091/mbc.e18-04-0255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, transcription factors (TFs) regulate the periodic expression of many genes during the cell cycle, including gene products required for progression through cell-cycle events. Experimental evidence coupled with quantitative models suggests that a network of interconnected TFs is capable of regulating periodic genes over the cell cycle. Importantly, these dynamical models were built on transcriptomics data and assumed that TF protein levels and activity are directly correlated with mRNA abundance. To ask whether TF transcripts match protein expression levels as cells progress through the cell cycle, we applied a multiplexed targeted mass spectrometry approach (parallel reaction monitoring) to synchronized populations of cells. We found that protein expression of many TFs and cell-cycle regulators closely followed their respective mRNA transcript dynamics in cycling wild-type cells. Discordant mRNA/protein expression dynamics was also observed for a subset of cell-cycle TFs and for proteins targeted for degradation by E3 ubiquitin ligase complexes such as SCF (Skp1/Cul1/F-box) and APC/C (anaphase-promoting complex/cyclosome). We further profiled mutant cells lacking B-type cyclin/CDK activity ( clb1-6) where oscillations in ubiquitin ligase activity, cyclin/CDKs, and cell-cycle progression are halted. We found that a number of proteins were no longer periodically degraded in clb1-6 mutants compared with wild type, highlighting the importance of posttranscriptional regulation. Finally, the TF complexes responsible for activating G1/S transcription (SBF and MBF) were more constitutively expressed at the protein level than at periodic mRNA expression levels in both wild-type and mutant cells. This comprehensive investigation of cell-cycle regulators reveals that multiple layers of regulation (transcription, protein stability, and proteasome targeting) affect protein expression dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Matthew W. Foster
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | | | | | - Erik J. Soderblom
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | - M. Arthur Moseley
- Duke Center for Genomic and Computational Biology, Proteomics and Metabolomics Shared Resource, Durham, NC 27701
| | | |
Collapse
|
27
|
Watson ER, Brown NG, Peters JM, Stark H, Schulman BA. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends Cell Biol 2018; 29:117-134. [PMID: 30482618 DOI: 10.1016/j.tcb.2018.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) E3 ligase controls mitosis and nonmitotic pathways through interactions with proteins that coordinate ubiquitylation. Since the discovery that the catalytic subunits of APC/C are conformationally dynamic cullin and RING proteins, many unexpected and intricate regulatory mechanisms have emerged. Here, we review structural knowledge of this regulation, focusing on: (i) coactivators, E2 ubiquitin (Ub)-conjugating enzymes, and inhibitors engage or influence multiple sites on APC/C including the cullin-RING catalytic core; and (ii) the outcomes of these interactions rely on mobility of coactivators and cullin-RING domains, which permits distinct conformations specifying different functions. Thus, APC/C is not simply an interaction hub, but is instead a dynamic, multifunctional molecular machine whose structure is remodeled by binding partners to achieve temporal ubiquitylation regulating cell division.
Collapse
Affiliation(s)
- Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Campus Vienna Biocenter (VBC) 1, 1030 Vienna, Austria
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
28
|
Kernan J, Bonacci T, Emanuele MJ. Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1924-1933. [PMID: 30290241 DOI: 10.1016/j.bbamcr.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 11/25/2022]
Abstract
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.
Collapse
Affiliation(s)
- Jennifer Kernan
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
29
|
Raspelli E, Facchinetti S, Fraschini R. Swe1 and Mih1 regulate mitotic spindle dynamics in budding yeast via Bik1. J Cell Sci 2018; 131:jcs.213520. [PMID: 30072442 DOI: 10.1242/jcs.213520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
The mitotic spindle is a very dynamic structure that is built de novo and destroyed at each round of cell division. In order to perform its fundamental function during chromosome segregation, mitotic spindle dynamics must be tightly coordinated with other cell cycle events. These changes are driven by several protein kinases, phosphatases and microtubule-associated proteins. In budding yeast, the kinase Swe1 and the phosphatase Mih1 act in concert in controlling the phosphorylation state of Cdc28, the catalytic subunit of Cdk1, the major regulator of the cell cycle. In this study we show that Swe1 and Mih1 are also involved in the control of mitotic spindle dynamics. Our data indicate that Swe1 and the Polo-like kinase Cdc5 control the balance between phosphorylated and unphosphorylated forms of Mih1, which is, in turn, important for mitotic spindle elongation. Moreover, we show that the microtubule-associated protein Bik1 is a phosphoprotein, and that Swe1 and Mih1 are both involved in controlling phosphorylation of Bik1. These results uncover new players and provide insights into the complex regulation of mitotic spindle dynamics.
Collapse
Affiliation(s)
- Erica Raspelli
- Università degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia Facchinetti
- Università degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Fraschini
- Università degli Studi di Milano-Bicocca, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
30
|
Solaki M, Ewald JC. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front Cell Dev Biol 2018; 6:93. [PMID: 30175098 PMCID: PMC6107797 DOI: 10.3389/fcell.2018.00093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are the central regulators of the eukaryotic cell cycle, and are conserved across eukaryotes. Their main and well-studied function lies in the regulation and the time-keeping of cell cycle entry and progression. Additionally, more and more non canonical functions of CDKs are being uncovered. One fairly recently discovered role of CDKs is the coordination of carbon and energy metabolism with proliferation. Evidence from different model organisms is accumulating that CDKs can directly and indirectly control fluxes through metabolism, for example by phosphorylating metabolic enzymes. In this mini-review, we summarize the emerging role of CDKs in regulating carbon and energy metabolism and discuss examples in different models from yeast to cancer cells.
Collapse
Affiliation(s)
| | - Jennifer C. Ewald
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
31
|
Harkness TAA. Activating the Anaphase Promoting Complex to Enhance Genomic Stability and Prolong Lifespan. Int J Mol Sci 2018; 19:ijms19071888. [PMID: 29954095 PMCID: PMC6073722 DOI: 10.3390/ijms19071888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
In aging cells, genomic instability is now recognized as a hallmark event. Throughout life, cells encounter multiple endogenous and exogenous DNA damaging events that are mostly repaired, but inevitably DNA mutations, chromosome rearrangements, and epigenetic deregulation begins to mount. Now that people are living longer, more and more late life time is spent suffering from age-related disease, in which genomic instability plays a critical role. However, several major questions remain heavily debated, such as the following: When does aging start? How long can we live? In order to minimize the impact of genomic instability on longevity, it is important to understand when aging starts, and to ensure repair mechanisms remain optimal from the very start to the very end. In this review, the interplay between the stress and nutrient response networks, and the regulation of homeostasis and genomic stability, is discussed. Mechanisms that link these two networks are predicted to be key lifespan determinants. The Anaphase Promoting Complex (APC), a large evolutionarily conserved ubiquitin ligase, can potentially serve this need. Recent work demonstrates that the APC maintains genomic stability, mounts a stress response, and increases longevity in yeast. Furthermore, inhibition of APC activity by glucose and nutrient response factors indicates a tight link between the APC and the stress/nutrient response networks.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
32
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
33
|
Sandquist JC, Larson ME, Woolner S, Ding Z, Bement WM. An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia. J Cell Biol 2018; 217:849-859. [PMID: 29321170 PMCID: PMC5839792 DOI: 10.1083/jcb.201708072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
Proper spindle orientation must be achieved before anaphase onset, but whether and how cells link spindle position to anaphase onset is unknown. Sandquist, Larson, et al. identify a novel interaction between the motor protein myosin-10 and the cell cycle regulator wee1 that is proposed to help coordinate preanaphase spindle dynamics and positioning with mitotic exit. Anaphase in epithelia typically does not ensue until after spindles have achieved a characteristic position and orientation, but how or even if cells link spindle position to anaphase onset is unknown. Here, we show that myosin-10 (Myo10), a motor protein involved in epithelial spindle dynamics, binds to Wee1, a conserved regulator of cyclin-dependent kinase 1 (Cdk1). Wee1 inhibition accelerates progression through metaphase and disrupts normal spindle dynamics, whereas perturbing Myo10 function delays anaphase onset in a Wee1-dependent manner. Moreover, Myo10 perturbation increases Wee1-mediated inhibitory phosphorylation on Cdk1, which, unexpectedly, concentrates at cell–cell junctions. Based on these and other results, we propose a model in which the Myo10–Wee1 interaction coordinates attainment of spindle position and orientation with anaphase onset.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, IA .,Department of Zoology, University of Wisconsin-Madison, Madison, WI
| | - Matthew E Larson
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI
| | - Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI.,Wellcome Trust Centre for Cell-Matrix Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Zhiwei Ding
- Biology Department, Grinnell College, Grinnell, IA
| | - William M Bement
- Department of Zoology, University of Wisconsin-Madison, Madison, WI .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
34
|
Bonaiuti P, Chiroli E, Gross F, Corno A, Vernieri C, Štefl M, Cosentino Lagomarsino M, Knop M, Ciliberto A. Cells Escape an Operational Mitotic Checkpoint through a Stochastic Process. Curr Biol 2017; 28:28-37.e7. [PMID: 29249657 DOI: 10.1016/j.cub.2017.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022]
Abstract
Improperly attached chromosomes activate the mitotic checkpoint that arrests cell division before anaphase. Cells can maintain an arrest for several hours but eventually will resume proliferation, a process we refer to as adaptation. Whether adapting cells bypass an active block or whether the block has to be removed to resume proliferation is not clear. Likewise, it is not known whether all cells of a genetically homogeneous population are equally capable to adapt. Here, we show that the mitotic checkpoint is operational when yeast cells adapt and that each cell has the same propensity to adapt. Our results are consistent with a model of the mitotic checkpoint where adaptation is driven by random fluctuations of APC/CCdc20, the molecular species inhibited by the checkpoint. Our data provide a quantitative framework for understanding how cells overcome a constant stimulus that halts cell cycle progression.
Collapse
Affiliation(s)
- Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Elena Chiroli
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Fridolin Gross
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Andrea Corno
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy
| | - Claudio Vernieri
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133 Milan, Italy
| | - Martin Štefl
- DKFZ-ZMBH Alliance, Centre for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Marco Cosentino Lagomarsino
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy; Sorbonne Universités, UPMC Univ Paris 06, 5 Place Jussieu, 75005 Paris, France; CNRS, UMR 7238 "Biologie Computationnelle et Quantitative," UPMC, Institut de Biologie Paris Seine, 4 Place Jussieu, 75005 Paris, France
| | - Michael Knop
- DKFZ-ZMBH Alliance, Centre for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; DKFZ-ZMBH Alliance, Department of Cell and Tumour Biology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andrea Ciliberto
- Istituto Firc di Oncologia Molecolare, IFOM, via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
35
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
36
|
Davey NE, Morgan DO. Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell 2017; 64:12-23. [PMID: 27716480 DOI: 10.1016/j.molcel.2016.09.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is a ubiquitin ligase that polyubiquitinates specific substrates at precise times in the cell cycle, thereby triggering the events of late mitosis in a strict order. The robust substrate specificity of the APC/C prevents the potentially deleterious degradation of non-APC/C substrates and also averts the cell-cycle errors and genomic instability that could result from mistimed degradation of APC/C targets. The APC/C recognizes short linear sequence motifs, or degrons, on its substrates. The specific and timely modification and degradation of APC/C substrates is likely to be modulated by variations in degron sequence and context. We discuss the extensive affinity, specificity, and selectivity determinants encoded in APC/C degrons, and we describe some of the extrinsic mechanisms that control APC/C-substrate recognition. As an archetype for protein motif-driven regulation of cell function, the APC/C-substrate interaction provides insights into the general properties of post-translational regulatory systems.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - David O Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Abstract
Cdk1 (Cdc28 in yeast) is a cyclin-dependent kinase (CDK) essential for cell cycle progression and cell division in normal cells. However, CDK activity also underpins proliferation of tumor cells, making it a relevant study subject. While numerous targets and processes regulated by Cdc28 have been identified, the exact functions of Cdc28 are only partially understood. To further explore the functions of Cdc28, we systematically overexpressed ∼4800 genes in wild-type (WT) cells and in cells with artificially reduced Cdc28 activity. This screen identified 366 genes that, when overexpressed, specifically compromised cell viability under conditions of reduced Cdc28 activity. Consistent with the crucial functions of Cdc28 in cell cycle regulation and chromosome metabolism, most of these genes have functions in the cell cycle, DNA replication, and transcription. However, a substantial number of genes control processes not directly associated with the cell cycle, indicating that Cdc28 may also regulate these processes. Finally, because the dataset was enriched for direct Cdc28 targets, the results from this screen will aid in identifying novel targets and process regulated by Cdc28.
Collapse
|
38
|
Heim A, Rymarczyk B, Mayer TU. Regulation of Cell Division. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:83-116. [PMID: 27975271 DOI: 10.1007/978-3-319-46095-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The challenging task of mitotic cell divisions is to generate two genetically identical daughter cells from a single precursor cell. To accomplish this task, a complex regulatory network evolved, which ensures that all events critical for the duplication of cellular contents and their subsequent segregation occur in the correct order, at specific intervals and with the highest possible fidelity. Transitions between cell cycle stages are triggered by changes in the phosphorylation state and levels of components of the cell cycle machinery. Entry into S-phase and M-phase are mediated by cyclin-dependent kinases (Cdks), serine-threonine kinases that require a regulatory cyclin subunit for their activity. Resetting the system to the interphase state is mediated by protein phosphatases (PPs) that counteract Cdks by dephosphorylating their substrates. To avoid futile cycles of phosphorylation and dephosphorylation, Cdks and PPs must be regulated in a manner such that their activities are mutually exclusive.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Beata Rymarczyk
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Thomas U Mayer
- Department of Biology and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany.
| |
Collapse
|
39
|
Abstract
The mitotic cell cycle is driven by Cyclin-Dependent Kinases (CDK). CDK activation requires the binding of activatory subunits termed cyclins. Different waves of cyclins are expressed during the cell cycle, enabling CDKs to trigger phase specific events. For instance, S phase cyclins promote the initiation of DNA replication but not chromosome segregation. There are at least 2 explanations for how such regulation is achieved. According to one of the visions, cyclins confer intrinsic substrate specificity to the CDK catalytic subunit. Alternatively a quantitative model has been proposed, according to which ever-increasing CDK activity is required to trigger cell cycle events from G1 to M. If a quantitative control prevails, then an early cyclin should trigger later cycle events if accumulated at high enough levels at the right time and place. We show here that a G1 phase cyclin bears the potential to trigger DNA replication and promote S and G2 phase specific transcription.
Collapse
Affiliation(s)
- Roger Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Asrar Malik
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Gloria Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Fanli Zeng
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Ping Ren
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - David G Quintana
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| |
Collapse
|
40
|
Rahi SJ, Pecani K, Ondracka A, Oikonomou C, Cross FR. The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription. Cell 2016; 165:475-87. [PMID: 27058667 DOI: 10.1016/j.cell.2016.02.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/22/2015] [Accepted: 02/22/2016] [Indexed: 12/13/2022]
Abstract
Throughout cell-cycle progression, the expression of multiple transcripts oscillate, and whether these are under the centralized control of the CDK-APC/C proteins or can be driven by a de-centralized transcription factor (TF) cascade is a fundamental question for understanding cell-cycle regulation. In budding yeast, we find that the transcription of nearly all genes, as assessed by RNA-seq or fluorescence microscopy in single cells, is dictated by CDK-APC/C. Three exceptional genes are transcribed in a pulsatile pattern in a variety of CDK-APC/C arrests. Pursuing one of these transcripts, the SIC1 inhibitor of B-type cyclins, we use a combination of mathematical modeling and experimentation to provide evidence that, counter-intuitively, Sic1 provides a failsafe mechanism promoting nuclear division when levels of mitotic cyclins are low.
Collapse
Affiliation(s)
- Sahand Jamal Rahi
- Laboratory of Cell Cycle Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Andrej Ondracka
- Laboratory of Cell Cycle Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Catherine Oikonomou
- Laboratory of Cell Cycle Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91107, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
41
|
Velma V, Dasari SR, Tchounwou PB. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights 2016; 11:113-21. [PMID: 27594783 PMCID: PMC4998075 DOI: 10.4137/bmi.s39445] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Venkatramreddy Velma
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Shaloam R Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| |
Collapse
|
42
|
de Boer HR, Llobet SG, van Vugt MATM. Erratum to: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:2985-2998. [PMID: 27251328 PMCID: PMC4969907 DOI: 10.1007/s00018-016-2279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Höckner S, Neumann-Arnold L, Seufert W. Dual control by Cdk1 phosphorylation of the budding yeast APC/C ubiquitin ligase activator Cdh1. Mol Biol Cell 2016; 27:2198-212. [PMID: 27226481 PMCID: PMC4945139 DOI: 10.1091/mbc.e15-11-0787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
The antagonism between cyclin-dependent kinases (Cdks) and the ubiquitin ligase APC/C-Cdh1 is central to eukaryotic cell cycle control. APC/C-Cdh1 targets cyclin B and other regulatory proteins for degradation, whereas Cdks disable APC/C-Cdh1 through phosphorylation of the Cdh1 activator protein at multiple sites. Budding yeast Cdh1 carries nine Cdk phosphorylation sites in its N-terminal regulatory domain, most or all of which contribute to inhibition. However, the precise role of individual sites has remained unclear. Here, we report that the Cdk phosphorylation sites of yeast Cdh1 are organized into autonomous subgroups and act through separate mechanisms. Cdk sites 1-3 had no direct effect on the APC/C binding of Cdh1 but inactivated a bipartite nuclear localization sequence (NLS) and thereby controlled the partitioning of Cdh1 between cytoplasm and nucleus. In contrast, Cdk sites 4-9 did not influence the cell cycle-regulated localization of Cdh1 but prevented its binding to the APC/C. Cdk sites 4-9 reside near two recently identified APC/C interaction motifs in a pattern conserved with the human Cdh1 orthologue. Thus a Cdk-inhibited NLS goes along with Cdk-inhibited APC/C binding sites in yeast Cdh1 to relay the negative control by Cdk1 phosphorylation of the ubiquitin ligase APC/C-Cdh1.
Collapse
Affiliation(s)
- Sebastian Höckner
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Lea Neumann-Arnold
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Wolfgang Seufert
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
44
|
Laomettachit T, Chen KC, Baumann WT, Tyson JJ. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks. PLoS One 2016; 11:e0153738. [PMID: 27187804 PMCID: PMC4871373 DOI: 10.1371/journal.pone.0153738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022] Open
Abstract
To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast.
Collapse
Affiliation(s)
- Teeraphan Laomettachit
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Katherine C. Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - William T. Baumann
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - John J. Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, Maslen S, Skehel M, Barford D. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 2016; 533:260-264. [PMID: 27120157 PMCID: PMC4878669 DOI: 10.1038/nature17973] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.
Collapse
Affiliation(s)
- Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
46
|
Abstract
Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.
Collapse
|
47
|
Fujimitsu K, Grimaldi M, Yamano H. Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 2016; 352:1121-4. [PMID: 27103671 DOI: 10.1126/science.aad3925] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Error-free genome duplication and segregation are ensured through the timely activation of ubiquitylation enzymes. The anaphase-promoting complex or cyclosome (APC/C), a multisubunit E3 ubiquitin ligase, is regulated by phosphorylation. However, the mechanism remains elusive. Using systematic reconstitution and analysis of vertebrate APC/Cs under physiological conditions, we show how cyclin-dependent kinase 1 (CDK1) activates the APC/C through coordinated phosphorylation between Apc3 and Apc1. Phosphorylation of the loop domains by CDK1 in complex with p9/Cks2 (a CDK regulatory subunit) controlled loading of coactivator Cdc20 onto APC/C. A phosphomimetic mutation introduced into Apc1 allowed Cdc20 to increase APC/C activity in interphase. These results define a previously unrecognized subunit-subunit communication over a distance and the functional consequences of CDK phosphorylation. Cdc20 is a potential therapeutic target, and our findings may facilitate the development of specific inhibitors.
Collapse
Affiliation(s)
- Kazuyuki Fujimitsu
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Margaret Grimaldi
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
48
|
Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry. Nat Commun 2016; 7:10975. [PMID: 26960431 PMCID: PMC4792957 DOI: 10.1038/ncomms10975] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023] Open
Abstract
Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C-Cdc20 regulation during this window of the cell cycle, if any, is unknown. Here we show that cyclin A2-Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C-Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C-Cdc20 and several substrates, including cyclin B1 and A2, are destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2-Cdk2 inhibition of interphase APC/C-Cdc20 to allow further cyclin A2 accumulation and mitotic entry.
Collapse
|
49
|
Malhotra S, Vinod PK, Mansfeld J, Stemmann O, Mayer TU. RETRACTED: The Anaphase-Promoting Complex/Cyclosome Is Essential for Entry into Meiotic M-Phase. Dev Cell 2016; 36:94-102. [DOI: 10.1016/j.devcel.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022]
|
50
|
Lu D, Girard JR, Li W, Mizrak A, Morgan DO. Quantitative framework for ordered degradation of APC/C substrates. BMC Biol 2015; 13:96. [PMID: 26573515 PMCID: PMC4647693 DOI: 10.1186/s12915-015-0205-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
Background During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/CCdc20, a key regulator of chromosome segregation in mitosis. Results We show experimentally that the rate of catalysis varies with different substrates of APC/CCdc20. Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/CCdc20 can alter the timing of degradation onset relative to APC/CCdc20 activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/CCdc20, their relative enzyme affinities and rates of catalysis influence the partitioning of APC/CCdc20 among substrates, resulting in substrate competition. Depending on how APC/CCdc20 is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/CCdc20 substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. Conclusions The degradation timing of APC/CCdc20 substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/CCdc20 interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0205-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Lu
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Juliet R Girard
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Weihan Li
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Arda Mizrak
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - David O Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|