1
|
Habowski AN, Budagavi DP, Scherer SD, Aurora AB, Caligiuri G, Flynn WF, Langer EM, Brody JR, Sears RC, Foggetti G, Arnal Estape A, Nguyen DX, Politi KA, Shen X, Hsu DS, Peehl DM, Kurhanewicz J, Sriram R, Suarez M, Xiao S, Du Y, Li XN, Navone NM, Labanca E, Willey CD. Patient-Derived Models of Cancer in the NCI PDMC Consortium: Selection, Pitfalls, and Practical Recommendations. Cancers (Basel) 2024; 16:565. [PMID: 38339316 PMCID: PMC10854945 DOI: 10.3390/cancers16030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab.
Collapse
Affiliation(s)
- Amber N. Habowski
- Cold Spring Harbor Laboratory, Long Island, NY 11724, USA; (A.N.H.); (D.P.B.); (G.C.)
| | - Deepthi P. Budagavi
- Cold Spring Harbor Laboratory, Long Island, NY 11724, USA; (A.N.H.); (D.P.B.); (G.C.)
| | - Sandra D. Scherer
- Department of Oncologic Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Arin B. Aurora
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75235, USA;
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Long Island, NY 11724, USA; (A.N.H.); (D.P.B.); (G.C.)
| | | | - Ellen M. Langer
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
| | | | - Anna Arnal Estape
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA;
| | - Don X. Nguyen
- Department of Pathology, Yale University, New Haven, CT 06520, USA; (D.X.N.); (K.A.P.)
| | - Katerina A. Politi
- Department of Pathology, Yale University, New Haven, CT 06520, USA; (D.X.N.); (K.A.P.)
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA;
| | - David S. Hsu
- Department of Medicine, Duke University, Durham, NC 27710, USA;
| | - Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (D.M.P.); (J.K.); (R.S.)
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (D.M.P.); (J.K.); (R.S.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (D.M.P.); (J.K.); (R.S.)
| | - Milagros Suarez
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Sophie Xiao
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Yuchen Du
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Xiao-Nan Li
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.N.)
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.N.)
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|