1
|
Mayer M, Winer L, Karniel A, Pinner E, Yardeni EH, Morgenstern D, Bibi E. Co-translational membrane targeting and holo-translocon docking of ribosomes translating the SRP receptor. J Mol Biol 2022; 434:167459. [DOI: 10.1016/j.jmb.2022.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
2
|
Jomaa A, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO, Ban N. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Rep 2021; 36:109350. [PMID: 34260909 PMCID: PMC8330425 DOI: 10.1016/j.celrep.2021.109350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Co-translational protein targeting to membranes by the signal recognition particle (SRP) is a universally conserved pathway from bacteria to humans. In mammals, SRP and its receptor (SR) have many additional RNA features and protein components compared to the bacterial system, which were recently shown to play regulatory roles. Due to its complexity, the mammalian SRP targeting process is mechanistically not well understood. In particular, it is not clear how SRP recognizes translating ribosomes with exposed signal sequences and how the GTPase activity of SRP and SR is regulated. Here, we present electron cryo-microscopy structures of SRP and SRP·SR in complex with the translating ribosome. The structures reveal the specific molecular interactions between SRP and the emerging signal sequence and the elements that regulate GTPase activity of SRP·SR. Our results suggest the molecular mechanism of how eukaryote-specific elements regulate the early and late stages of SRP-dependent protein targeting. Jomaa et al. present cryo-EM structures of mammalian SRP, SRP receptor, and the translating ribosome. The structures reveal the role of eukaryotic-specific features involved in regulating early and late stages of co-translational protein targeting to the endoplasmic reticulum and suggest a model for cargo recognition and handover.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Simon Eitzinger
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Zikun Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kan Kobayashi
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
3
|
SRPassing Co-translational Targeting: The Role of the Signal Recognition Particle in Protein Targeting and mRNA Protection. Int J Mol Sci 2021; 22:ijms22126284. [PMID: 34208095 PMCID: PMC8230904 DOI: 10.3390/ijms22126284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.
Collapse
|
4
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
5
|
Lee JH, Jomaa A, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N, Shan SO. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. SCIENCE ADVANCES 2021; 7:eabg0942. [PMID: 34020957 PMCID: PMC8139590 DOI: 10.1126/sciadv.abg0942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 05/07/2023]
Abstract
The conserved signal recognition particle (SRP) cotranslationally delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum (ER). The molecular mechanism by which eukaryotic SRP transitions from cargo recognition in the cytosol to protein translocation at the ER is not understood. Here, structural, biochemical, and single-molecule studies show that this transition requires multiple sequential conformational rearrangements in the targeting complex initiated by guanosine triphosphatase (GTPase)-driven compaction of the SRP receptor (SR). Disruption of these rearrangements, particularly in mutant SRP54G226E linked to severe congenital neutropenia, uncouples the SRP/SR GTPase cycle from protein translocation. Structures of targeting intermediates reveal the molecular basis of early SRP-SR recognition and emphasize the role of eukaryote-specific elements in regulating targeting. Our results provide a molecular model for the structural and functional transitions of SRP throughout the targeting cycle and show that these transitions provide important points for biological regulation that can be perturbed in genetic diseases.
Collapse
Affiliation(s)
- Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruilin Qian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuemeng Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hao-Hsuan Hsieh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Simone Mattei
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Cryo-EM Knowledge Hub, ETH Zurich, 8093 Zurich, Switzerland
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat Commun 2020; 11:5840. [PMID: 33203865 PMCID: PMC7673040 DOI: 10.1038/s41467-020-19548-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Protein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.
Collapse
|
7
|
Wild K, Juaire KD, Soni K, Shanmuganathan V, Hendricks A, Segnitz B, Beckmann R, Sinning I. Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions. Nucleic Acids Res 2019; 47:3184-3196. [PMID: 30649417 PMCID: PMC6451106 DOI: 10.1093/nar/gky1324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Co-translational protein targeting to membranes depends on the regulated interaction of two ribonucleoprotein particles (RNPs): the ribosome and the signal recognition particle (SRP). Human SRP is composed of an SRP RNA and six proteins with the SRP GTPase SRP54 forming the targeting complex with the heterodimeric SRP receptor (SRαβ) at the endoplasmic reticulum membrane. While detailed structural and functional data are available especially for the bacterial homologs, the analysis of human SRP was impeded by the unavailability of recombinant SRP. Here, we describe the large-scale production of all human SRP components and the reconstitution of homogeneous SRP and SR complexes. Binding to human ribosomes is determined by microscale thermophoresis for individual components, assembly intermediates and entire SRP, and binding affinities are correlated with structural information available for all ribosomal contacts. We show that SRP RNA does not bind to the ribosome, while SRP binds with nanomolar affinity involving a two-step mechanism of the key-player SRP54. Ultrasensitive binding of SRP68/72 indicates avidity by multiple binding sites that are dominated by the C-terminus of SRP72. Our data extend the experimental basis to understand the mechanistic principles of co-translational targeting in mammals and may guide analyses of complex RNP–RNP interactions in general.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Keven D Juaire
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Vivekanandan Shanmuganathan
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Hwang Fu YH, Chandrasekar S, Lee JH, Shan SO. A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting. J Cell Biol 2019; 218:3307-3319. [PMID: 31537711 PMCID: PMC6781444 DOI: 10.1083/jcb.201901001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 06/28/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Molecular recognition features (MoRFs) provide interaction motifs in intrinsically disordered protein regions to mediate diverse cellular functions. Here we report that a MoRF element, located in the disordered linker domain of the mammalian signal recognition particle (SRP) receptor and conserved among eukaryotes, plays an essential role in sensing the ribosome during cotranslational protein targeting to the endoplasmic reticulum. Loss of the MoRF in the SRP receptor (SR) largely abolishes the ability of the ribosome to activate SRP-SR assembly and impairs cotranslational protein targeting. These results demonstrate a novel role for MoRF elements and provide a mechanism for the ribosome-induced activation of the mammalian SRP pathway. Kinetic analyses and comparison with the bacterial SRP further suggest that the SR MoRF functionally replaces the essential GNRA tetraloop in the bacterial SRP RNA, providing an example for the replacement of RNA function by proteins during the evolution of ancient ribonucleoprotein particles.
Collapse
Affiliation(s)
- Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
9
|
Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting. Proc Natl Acad Sci U S A 2018; 115:E5487-E5496. [PMID: 29848629 DOI: 10.1073/pnas.1802252115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Signal recognition particle (SRP) is a universally conserved targeting machine that mediates the targeted delivery of ∼30% of the proteome. The molecular mechanism by which eukaryotic SRP achieves efficient and selective protein targeting remains elusive. Here, we describe quantitative analyses of completely reconstituted human SRP (hSRP) and SRP receptor (SR). Enzymatic and fluorescence analyses showed that the ribosome, together with a functional signal sequence on the nascent polypeptide, are required to activate SRP for rapid recruitment of the SR, thereby delivering translating ribosomes to the endoplasmic reticulum. Single-molecule fluorescence spectroscopy combined with cross-complementation analyses reveal a sequential mechanism of activation whereby the ribosome unlocks the hSRP from an autoinhibited state and primes SRP to sample a variety of conformations. The signal sequence further preorganizes the mammalian SRP into the optimal conformation for efficient recruitment of the SR. Finally, the use of a signal sequence to activate SRP for receptor recruitment is a universally conserved feature to enable efficient and selective protein targeting, and the eukaryote-specific components confer upon the mammalian SRP the ability to sense and respond to ribosomes.
Collapse
|
10
|
Co-translational Folding Intermediate Dictates Membrane Targeting of the Signal Recognition Particle Receptor. J Mol Biol 2018; 430:1607-1620. [PMID: 29704493 DOI: 10.1016/j.jmb.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/22/2022]
Abstract
Much of our knowledge on the function of proteins is deduced from their mature, folded states. However, it is unknown whether partially synthesized nascent protein segments can execute biological functions during translation and whether their premature folding states matter. A recent observation that a nascent chain performs a distinct function, co-translational targeting in vivo, has been made with the Escherichia coli signal recognition particle receptor FtsY, a major player in the conserved pathway of membrane protein biogenesis. FtsY functions as a membrane-associated entity, but very little is known about the mode of its targeting to the membrane. Here we investigated the underlying structural mechanism of the co-translational FtsY targeting to the membrane. Our results show that helices N2-4, which mediate membrane targeting, form a stable folding intermediate co-translationally that greatly differs from its fold in the mature FtsY. These results thus resolve a long-standing mystery of how the receptor targets the membrane even when deleted of its alleged membrane targeting sequence. The structurally distinct targeting determinant of FtsY exists only co-translationally. Our studies will facilitate further efforts to seek cellular factors required for proper targeting and association of FtsY with the membrane. Moreover, the results offer a hallmark example for how co-translational nascent intermediates may dictate biological functions.
Collapse
|
11
|
Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D, Shan SO, Ban N. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex. Science 2018; 360:323-327. [PMID: 29567807 PMCID: PMC6309883 DOI: 10.1126/science.aar7924] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023]
Abstract
Signal recognition particle (SRP) targets proteins to the endoplasmic reticulum (ER). SRP recognizes the ribosome synthesizing a signal sequence and delivers it to the SRP receptor (SR) on the ER membrane followed by the transfer of the signal sequence to the translocon. Here, we present the cryo-electron microscopy structure of the mammalian translating ribosome in complex with SRP and SR in a conformation preceding signal sequence handover. The structure visualizes all eukaryotic-specific SRP and SR proteins and reveals their roles in stabilizing this conformation by forming a large protein assembly at the distal site of SRP RNA. We provide biochemical evidence that the guanosine triphosphate hydrolysis of SRP·SR is delayed at this stage, possibly to provide a time window for signal sequence handover to the translocon.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland.
| |
Collapse
|
12
|
Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Nat Commun 2015; 6:10133. [PMID: 26634806 PMCID: PMC4686813 DOI: 10.1038/ncomms10133] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the endoplasmic reticulum membrane. The canonical pathway requires the signal recognition particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER membrane protein Sec62 and can be uncoupled from translation. Here we show that SR switches translocons to SRP-dependent translocation by displacing Sec62. This activity localizes to the charged linker region between the longin and GTPase domains of SRα. Using truncation variants, crosslinking and translocation assays reveals two elements with distinct functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second promotes ribosome binding and is conserved between all eukaryotes. These specific regions in SRα reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain complexes. Overall, our study identifies an important function of SR, which mechanistically links two seemingly independent modes of translocation.
Collapse
|
13
|
Structure and Switch Cycle of SRβ as Ancestral Eukaryotic GTPase Associated with Secretory Membranes. Structure 2015; 23:1838-1847. [PMID: 26299945 DOI: 10.1016/j.str.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 11/22/2022]
Abstract
G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRβ GTPases associated with secretory membranes. SRβ is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRβ integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRβ-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRβ in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRβ at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRβ and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRβ into the scheme of protein targeting.
Collapse
|
14
|
Aviram N, Schuldiner M. Embracing the void--how much do we really know about targeting and translocation to the endoplasmic reticulum? Curr Opin Cell Biol 2014; 29:8-17. [PMID: 24662022 DOI: 10.1016/j.ceb.2014.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
Abstract
In order for a protein to enter the secretory pathway, two crucial steps must occur: it first needs to be targeted to the cytosolic surface of the endoplasmic reticulum (ER), and then be translocated across the ER membrane. Although for many years studies of targeting focused on the signal recognition particle, recent findings reveal that several alternative targeting pathways exist, some still undescribed, and some only recently elucidated. In addition, many genes implicated in the translocation step have not been assigned a specific function. Here, we will focus on the open questions regarding ER targeting and translocation, and discuss how combining classical biochemistry with systematic approaches can promote our understanding of these essential cellular steps.
Collapse
Affiliation(s)
- Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
16
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
17
|
Bibi E. Is there a twist in the Escherichia coli signal recognition particle pathway? Trends Biochem Sci 2011; 37:1-6. [PMID: 22088262 DOI: 10.1016/j.tibs.2011.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins (IMPs) are usually synthesized by membrane-bound ribosomes, and this process requires proper localization of ribosomes and IMP-encoding transcripts. However, the underlying molecular mechanism of the pathway has not yet been fully established in vivo. The prevailing hypothesis is that ribosomes and transcripts are delivered to the membrane together during IMP translation by the signal recognition particle (SRP) and its receptor. Here, I discuss an alternative hypothesis that posits that ribosomes and transcripts are targeted separately. Ribosome targeting to the membrane might be mediated by the SRP receptor, rather than by SRP, and IMP-encoding transcripts might be targeted to the membrane in a translation-independent manner. According to this scenario, the SRP executes its essential function on the membrane at a later stage of the targeting pathway.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1893-905. [PMID: 21756943 PMCID: PMC7172674 DOI: 10.1016/j.bbamcr.2011.06.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.
Collapse
Affiliation(s)
- Emily M Lynes
- Department of Cell Biology, University of Alberta, Alberta, Canada
| | | |
Collapse
|
19
|
Lewis NE, Marty NJ, Kathir KM, Rajalingam D, Kight AD, Daily A, Kumar TKS, Henry RL, Goforth RL. A dynamic cpSRP43-Albino3 interaction mediates translocase regulation of chloroplast signal recognition particle (cpSRP)-targeting components. J Biol Chem 2010; 285:34220-30. [PMID: 20729200 PMCID: PMC2962520 DOI: 10.1074/jbc.m110.160093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/16/2010] [Indexed: 12/31/2022] Open
Abstract
The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Daily
- Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | | | | | | |
Collapse
|
20
|
Bibi E. Early targeting events during membrane protein biogenesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:841-50. [PMID: 20682283 DOI: 10.1016/j.bbamem.2010.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
All living cells have co-translational pathways for targeting membrane proteins. Co-translation pathways for secretory proteins also exist but mostly in eukaryotes. Unlike secretory proteins, the biosynthetic pathway of most membrane proteins is conserved through evolution and these proteins are usually synthesized by membrane-bound ribosomes. Translation on the membrane requires that both the ribosomes and the mRNAs be properly localized. Theoretically, this can be achieved by several means. (i) The current view is that the targeting of cytosolic mRNA-ribosome-nascent chain complexes (RNCs) to the membrane is initiated by information in the emerging hydrophobic nascent polypeptides. (ii) The alternative model suggests that ribosomes may be targeted to the membrane also constitutively, whereas the appropriate mRNAs may be carried on small ribosomal subunits or targeted by other cellular factors to the membrane-bound ribosomes. Importantly, the available experimental data do not rule out the possibility that cells may also utilize both pathways in parallel. In any case, it is well documented that a major player in the targeting pathway is the signal recognition particle (SRP) system composed of the SRP and its receptor (SR). Although the functional core of the SRP system is evolutionarily conserved, its composition and biological practice come with different flavors in various organisms. This review is dedicated mainly to the Escherichia (E.) coli SRP, where the biochemical and structural properties of components of the SRP system have been relatively characterized, yielding essential information about various aspects of the pathway. In addition, several cellular interactions of the SRP and its receptor have been described in E. coli, providing insights into their spatial function. Collectively, these in vitro studies have led to the current view of the targeting pathway [see (i) above]. Interestingly, however, in vivo studies of the role of the SRP and its receptor, with emphasis on the temporal progress of the pathway, elicited an alternative hypothesis [see (ii) above]. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
21
|
Abstract
The Signal Recognition Particle (SRP) plays a critical role in the sorting of nascent secretory and membrane proteins. Remarkably, this function has been conserved from bacteria, where SRP delivers proteins to the inner membrane, through to eukaryotes, where SRP is required for targeting of proteins to the endoplasmic reticulum. This review focuses on present understanding of SRP structure and function and the relationship between the two. Furthermore, the similarities and differences in the structure, function and cellular role of SRP in bacteria, chloroplasts, fungi and mammals will be stressed.
Collapse
Affiliation(s)
- Martin R Pool
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
Zhang X, Kung S, Shan SO. Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol Biol 2008; 381:581-93. [PMID: 18617187 PMCID: PMC2630804 DOI: 10.1016/j.jmb.2008.05.049] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
Abstract
Two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of newly synthesized proteins to the endoplasmic reticulum or plasma membrane. During the protein targeting reaction, the 4.5S SRP RNA accelerates the association between the two GTPases by 400-fold. Using fluorescence resonance energy transfer, we demonstrate here that formation of a stable SRP x SR complex involves two distinct steps: a fast initial association between SRP and SR to form a GTP-independent early complex and then a GTP-dependent conformational rearrangement to form the stable final complex. We also found that the 4.5S SRP RNA significantly stabilizes the early GTP-independent intermediate. Furthermore, mutational analyses show that there is a strong correlation between the ability of the mutant SRP RNAs to stabilize the early intermediate and their ability to accelerate SRP x SR complex formation. We propose that the SRP RNA, by stabilizing the early intermediate, can give this transient intermediate a longer life time and therefore a higher probability to rearrange to the stable final complex. This provides a coherent model that explains how the 4.5S RNA exerts its catalytic role in SRP x SR complex assembly.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| | - Simon Kung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125
| |
Collapse
|
23
|
Jiang Y, Cheng Z, Mandon EC, Gilmore R. An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. ACTA ACUST UNITED AC 2008; 180:1149-61. [PMID: 18347066 PMCID: PMC2290843 DOI: 10.1083/jcb.200707196] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal recognition particle (SRP)-dependent targeting pathway facilitates rapid, efficient delivery of the ribosome-nascent chain complex (RNC) to the protein translocation channel. We test whether the SRP receptor (SR) locates a vacant protein translocation channel by interacting with the yeast Sec61 and Ssh1 translocons. Surprisingly, the slow growth and cotranslational translocation defects caused by deletion of the transmembrane (TM) span of yeast SRbeta (SRbeta-DeltaTM) are exaggerated when the SSH1 gene is disrupted. Disruption of the SBH2 gene, which encodes the beta subunit of the Ssh1p complex, likewise causes a growth defect when combined with SRbeta-DeltaTM. Cotranslational translocation defects in the ssh1DeltaSRbeta-DeltaTM mutant are explained by slow and inefficient in vivo gating of translocons by RNCs. A critical function for translocation channel beta subunits in the SR-channel interaction is supported by the observation that simultaneous deletion of Sbh1p and Sbh2p causes a defect in the cotranslational targeting pathway that is similar to the translocation defect caused by deletion of either subunit of the SR.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
24
|
Selwood SP, Parvathy S, Cordell B, Ryan HS, Oshidari F, Vincent V, Yesavage J, Lazzeroni LC, Murphy GM. Gene expression profile of the PDAPP mouse model for Alzheimer's disease with and without Apolipoprotein E. Neurobiol Aging 2007; 30:574-90. [PMID: 17904698 DOI: 10.1016/j.neurobiolaging.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 12/31/2022]
Abstract
The APOE epsilon 4 allele is a strong risk factor for Alzheimer's disease (AD). However, the molecular basis for this effect remains unclear. We examined expression of approximately 12,000 genes and expressed sequence tags in the hippocampus and cortex of PDAPP (APP(V717)) mice modeling AD that show extensive amyloid beta (A beta) deposition, and in PDAPP mice lacking murine APOE expression, which show marked attenuation of A beta deposition in the brain. Wild type and APOE knockout animals were also examined. Expression levels were determined at the initial stage of A beta deposition, as well as in older animals showing extensive neuropathological changes. Fifty-four transcripts were identified using our statistical analysis as differentially regulated between the PDAPP and PDAPP/APOE ko mice, whereas 31 transcripts were classified as differentially regulated among PDAPP mice and WT animals, and seven transcripts were identified as regulated between the PDAPP/APOE ko animals and the APOE ko animals. Interestingly, many of the differentially regulated genes we detected can be related to biological processes previously shown to be important in AD pathophysiology, including inflammation, calcium homeostasis, cholesterol transport and uptake, kinases and phosphatases involved in tau phosphorylation and dephosphorylation, mitochondrial energy metabolism, protein degradation, neuronal growth, endoplasmic reticulum (ER) stress related proteins, antioxidant activity, cytoskeletal organization, and presenilin binding proteins. Regulated genes also included some not directly associated with AD in the past but likely to be involved in known AD pathophysiologic mechanisms, and others that may represent completely novel factors in the pathogenesis of AD. These results provide a global molecular profile of hippocampal and cortical gene expression during the initial and intermediate stages Abeta deposition, and the effects of APOE deletion on this process.
Collapse
Affiliation(s)
- Simon P Selwood
- Neuroscience Research Laboratories, Stanford University School of Medicine, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Parlitz R, Eitan A, Stjepanovic G, Bahari L, Bange G, Bibi E, Sinning I. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J Biol Chem 2007; 282:32176-84. [PMID: 17726012 DOI: 10.1074/jbc.m705430200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli membrane protein biogenesis is mediated by a signal recognition particle and its membrane-associated receptor (FtsY). Although crucial for its function, it is still not clear how FtsY interacts with the membrane. Analysis of the structure/function differences between severely truncated active (NG+1) and inactive (NG) mutants of FtsY enabled us to identify an essential membrane-interacting determinant. Comparison of the three-dimensional structures of the mutants, combined with site-directed mutagenesis, modeling, and liposome-binding assays, revealed that FtsY contains a conserved autonomous lipid-binding amphipathic alpha-helix at the N-terminal end of the N domain. Deletion experiments showed that this helix is essential for FtsY function in vivo, thus offering, for the first time, clear evidence for the functionally important, physiologically relevant interaction of FtsY with lipids.
Collapse
Affiliation(s)
- Richard Parlitz
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Gawronski-Salerno J, Freymann DM. Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J Struct Biol 2007; 158:122-8. [PMID: 17184999 PMCID: PMC2566988 DOI: 10.1016/j.jsb.2006.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 11/20/2022]
Abstract
Ffh and FtsY are GTPase components of the signal recognition particle co-translational targeting complex that assemble during the SRP cycle to form a GTP-dependent and pseudo twofold symmetric heterodimer. Previously the SRP GTPase heterodimer has been stabilized and purified for crystallographic studies using both the non-hydrolysable GTP analog GMPPCP and the pseudo-transition state analog GDP:AlF4, revealing in both cases a buried nucleotide pair that bridges and forms a key element of the heterodimer interface. A complex of Ffh and FtsY from Thermus aquaticus formed in the presence of the analog GMPPNP could not be obtained, however. The origin of this failure was previously unclear, and it was thought to have arisen from either instability of the analog, or, alternatively, from differences in its interactions within the tightly conscribed composite active site chamber of the complex. Using insights gained from the previous structure determinations, we have now determined the structure of the SRP GTPase targeting heterodimer stabilized by the non-hydrolysable GTP analog GMPPNP. The structure demonstrates how the different GTP analogs are accommodated within the active site chamber despite slight differences in the geometry of the phosphate chain. It also reveals a K+ coordination site at the highly conserved DARGG loop at the N/G interdomain interface.
Collapse
Affiliation(s)
- Joseph Gawronski-Salerno
- Dept. of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Ave., Chicago, IL 60611
| | - Douglas M. Freymann
- Dept. of Molecular Pharmacology & Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Ave., Chicago, IL 60611
| |
Collapse
|
27
|
Angelini S, Boy D, Schiltz E, Koch HG. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. ACTA ACUST UNITED AC 2006; 174:715-24. [PMID: 16923832 PMCID: PMC2064314 DOI: 10.1083/jcb.200606093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRα subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRβ subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY–SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor.
Collapse
Affiliation(s)
- Sandra Angelini
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
28
|
Halic M, Gartmann M, Schlenker O, Mielke T, Pool MR, Sinning I, Beckmann R. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 2006; 312:745-7. [PMID: 16675701 DOI: 10.1126/science.1124864] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signal sequences of secretory and membrane proteins are recognized by the signal recognition particle (SRP) as they emerge from the ribosome. This results in their targeting to the membrane by docking with the SRP receptor, which facilitates transfer of the ribosome to the translocon. Here, we present the 8 angstrom cryo-electron microscopy structure of a "docking complex" consisting of a SRP-bound 80S ribosome and the SRP receptor. Interaction of the SRP receptor with both SRP and the ribosome rearranged the S domain of SRP such that a ribosomal binding site for the translocon, the L23e/L35 site, became exposed, whereas Alu domain-mediated elongation arrest persisted.
Collapse
Affiliation(s)
- Mario Halic
- Institute of Biochemistry, Charité, University Medical School Berlin, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Schlenker O, Hendricks A, Sinning I, Wild K. The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains. J Biol Chem 2006; 281:8898-906. [PMID: 16439358 DOI: 10.1074/jbc.m512415200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The eukaryotic signal recognition particle (SRP) and its receptor (SR) play a central role in co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. The SR is a heterodimeric complex assembled by the two GTPases SRalpha and SRbeta, which is membrane-anchored. Here we present the 2.45-A structure of mammalian SRbeta in its Mg2+ GTP-bound state in complex with the minimal binding domain of SRalpha termed SRX. SRbeta is a member of the Ras-GTPase superfamily closely related to Arf and Sar1, while SRX belongs to the SNARE-like superfamily with a fold also known as longin domain. SRX binds to the P loop and the switch regions of SRbeta-GTP. The binding mode and structural similarity with other GTPase-effector complexes suggests a co-GAP (GTPase-activating protein) function for SRX. Comparison with the homologous yeast structure and other longin domains reveals a conserved adjustable hydrophobic surface within SRX which is of central importance for the SRbeta-GTP:SRX interface. A helix swap in SRX results in the formation of a dimer in the crystal structure. Based on structural conservation we present the SRbeta-GTP:SRX structure as a prototype for conserved interactions in a variety of GTPase regulated targeting events occurring at endomembranes.
Collapse
Affiliation(s)
- Oliver Schlenker
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
30
|
Ménétret JF, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW. Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 2005; 348:445-57. [PMID: 15811380 DOI: 10.1016/j.jmb.2005.02.053] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/13/2005] [Accepted: 02/21/2005] [Indexed: 11/21/2022]
Abstract
The mammalian Sec61 complex forms a protein translocation channel whose function depends upon its interaction with the ribosome and with membrane proteins of the endoplasmic reticulum (ER). To study these interactions, we determined structures of "native" ribosome-channel complexes derived from ER membranes. We find that the ribosome is linked to the channel by seven connections, but the junction may still provide a path for domains of nascent membrane proteins to move into the cytoplasm. In addition, the native channel is significantly larger than a channel formed by the Sec61 complex, due to the presence of a second membrane protein. We identified this component as TRAP, the translocon-associated protein complex. TRAP interacts with Sec61 through its transmembrane domain and has a prominent lumenal domain. The presence of TRAP in the native channel indicates that it may play a general role in translocation. Crystal structures of two Sec61 homologues were used to model the channel. This analysis indicates that there are four Sec61 complexes and two TRAP molecules in each native channel. Thus, we suggest that a single Sec61 complex may form a conduit for translocating polypeptides, while three copies of Sec61 play a structural role or recruit accessory factors such as TRAP.
Collapse
Affiliation(s)
- Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Cheng Z, Jiang Y, Mandon EC, Gilmore R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. ACTA ACUST UNITED AC 2005; 168:67-77. [PMID: 15631991 PMCID: PMC2171681 DOI: 10.1083/jcb.200408188] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasmic surface of Sec61p is the binding site for the ribosome and has been proposed to interact with the signal recognition particle receptor during targeting of the ribosome nascent chain complex to the translocation channel. Point mutations in cytoplasmic loops six (L6) and eight (L8) of yeast Sec61p cause reductions in growth rates and defects in the translocation of nascent polypeptides that use the cotranslational translocation pathway. Sec61 heterotrimers isolated from the L8 sec61 mutants have a greatly reduced affinity for 80S ribosomes. Cytoplasmic accumulation of protein precursors demonstrates that the initial contact between the large ribosomal subunit and the Sec61 complex is important for efficient insertion of a nascent polypeptide into the translocation pore. In contrast, point mutations in L6 of Sec61p inhibit cotranslational translocation without significantly reducing the ribosome-binding activity, indicating that the L6 and L8 sec61 mutants affect different steps in the cotranslational translocation pathway.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
32
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
33
|
Wild K, Halic M, Sinning I, Beckmann R. SRP meets the ribosome. Nat Struct Mol Biol 2004; 11:1049-53. [PMID: 15523481 DOI: 10.1038/nsmb853] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 10/04/2004] [Indexed: 11/09/2022]
Abstract
Cotranslational targeting directly couples synthesis of proteins to their translocation across or insertion into membranes. The signal recognition particle (SRP) and its membrane-bound receptor facilitate the targeting of the translation machinery, the ribosome, via recognition of a signal sequence in the nascent peptide chain. By combining structures of free and ribosome-bound SRP we derive a structural model describing the dynamic nature of SRP when it meets the ribosome.
Collapse
Affiliation(s)
- Klemens Wild
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Snapp EL, Reinhart GA, Bogert BA, Lippincott-Schwartz J, Hegde RS. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. ACTA ACUST UNITED AC 2004; 164:997-1007. [PMID: 15051734 PMCID: PMC2172055 DOI: 10.1083/jcb.200312079] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein translocons of the mammalian endoplasmic reticulum are composed of numerous functional components whose organization during different stages of the transport cycle in vivo remains poorly understood. We have developed generally applicable methods based on fluorescence resonance energy transfer (FRET) to probe the relative proximities of endogenously expressed translocon components in cells. Examination of substrate-engaged translocons revealed oligomeric assemblies of the Sec61 complex that were associated to varying degrees with other essential components including the signal recognition particle receptor TRAM and the TRAP complex. Remarkably, these components not only remained assembled but also had a similar, yet distinguishable, organization both during and after nascent chain translocation. The persistence of preassembled and complete translocons between successive rounds of transport may facilitate highly efficient translocation in vivo despite temporal constraints imposed by ongoing translation and a crowded cellular environment.
Collapse
Affiliation(s)
- Erik L Snapp
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr., Bldg. 18, Rm. 101, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Goforth RL, Peterson EC, Yuan J, Moore MJ, Kight AD, Lohse MB, Sakon J, Henry RL. Regulation of the GTPase cycle in post-translational signal recognition particle-based protein targeting involves cpSRP43. J Biol Chem 2004; 279:43077-84. [PMID: 15292240 DOI: 10.1074/jbc.m401600200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chloroplast signal recognition particle consists of a conserved 54-kDa GTPase and a novel 43-kDa chromodomain protein (cpSRP43) that together bind light-harvesting chlorophyll a/b-binding protein (LHCP) to form a soluble targeting complex that is subsequently directed to the thylakoid membrane. Homology-based modeling of cpSRP43 indicates the presence of two previously identified chromodomains along with a third N-terminal chromodomain. Chromodomain deletion constructs were used to examine the role of each chromodomain in mediating distinct steps in the LHCP localization mechanism. The C-terminal chromodomain is completely dispensable for LHCP targeting/integration in vitro. The central chromodomain is essential for both targeting complex formation and integration because of its role in binding the M domain of cpSRP54. The N-terminal chromodomain (CD1) is unnecessary for targeting complex formation but is required for integration. This correlates with the ability of CD1 along with the ankyrin repeat region of cpSRP43 to regulate the GTPase cycle of the cpSRP-receptor complex.
Collapse
Affiliation(s)
- Robyn L Goforth
- Biological Sciences Department, University of Arkansas, Fayetteville, AK 72701, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ring G, Eichler J. Membrane Binding of Ribosomes Occurs at SecYE-based Sites in the Archaea Haloferax volcanii. J Mol Biol 2004; 336:997-1010. [PMID: 15037064 DOI: 10.1016/j.jmb.2004.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/18/2003] [Accepted: 01/09/2004] [Indexed: 11/30/2022]
Abstract
Whereas ribosomes bind to membranes at eukaryal Sec61alphabetagamma and bacterial SecYEG sites, ribosomal membrane binding has yet to be studied in Archaea. Accordingly, functional ribosomes and inverted membrane vesicles were prepared from the halophilic archaea Haloferax volcanii. The ability of the ribosomes to bind to the membranes was determined using a flotation approach. Proteolytic pretreatment of the vesicles, as well as quantitative analyses, revealed the existence of a proteinaceous ribosome receptor, with the affinity of binding being comparable to that found in Eukarya and Bacteria. Inverted membrane vesicles prepared from cells expressing chimeras of SecE or SecY fused to a cytoplasmically oriented cellulose-binding domain displayed reduced ribosome binding due to steric hindrance. Pretreatment with cellulose drastically reduced ribosome binding to chimera-containing but not wild-type vesicles. Thus, as in Eukarya and Bacteria, ribosome binding in Archaea occurs at Sec-based sites. However, unlike the situation in the other domains of Life, ribosome binding in haloarchaea requires molar concentrations of salt. Structural information on ribosome-Sec complexes may provide insight into this high salt-dependent binding.
Collapse
Affiliation(s)
- Gabriela Ring
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel
| | | |
Collapse
|