1
|
Zegarra V, Weiland P, Plitzko PA, Thiery J, Czech L, Willmund F, Bedrunka P, Bange G. Structural and mechanistic basis for the regulation of the chloroplast signal recognition particle by (p)ppGpp. FEBS Lett 2025; 599:1373-1385. [PMID: 39935135 DOI: 10.1002/1873-3468.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
The alarmones (p)ppGpp play a critical role in chloroplasts by acting as signalling molecules that regulate gene expression, protein synthesis and chloroplast (cp) development, particularly in response to stress and nutrient availability. However, the underlying molecular mechanisms are still poorly understood. Here, we show that (p)ppGpp binds to the GTPase-containing NG domains of the chloroplast signal recognition particle (SRP) and its receptor, preventing their GTP-dependent association through a competitive mechanism. The structure of (cp)FtsY bound to ppGpp reveals that the alarmone employs the same binding mode as its GDP counterpart and hinders chloroplast SRP:FtsY complex formation via its pyrophosphate moiety. Consequently, (p)ppGpp also inhibits the mutual stimulation of the two GTPases present in the (cp)SRP54:FtsY complex. Taken together, our findings provide the first description of how the alarmones (p)ppGpp may regulate the SRP-dependent protein trafficking pathway in plants.
Collapse
Affiliation(s)
- Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Center for Tumor Biology and Immunology, Department of Medicine, Philipps-University Marburg, Germany
| | - Pauline Anka Plitzko
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Julia Thiery
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Laura Czech
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Felix Willmund
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Biology, Philipps-University Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Bodensohn US, Dünschede B, Kuhlmann C, Kumari K, Ladig R, Grefen C, Schleiff E, Fernandez D, Schünemann D. GET3B is involved in chloroplast biogenesis and interacts with the thylakoidal ALB3 and ALB4 insertases. PLANT CELL REPORTS 2025; 44:108. [PMID: 40299103 PMCID: PMC12040988 DOI: 10.1007/s00299-025-03500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
KEY MESSAGE Proteomic, functional physiological analyses of get3b mutant plants highlight GET3B's role in chloroplast function. Genetic and interaction analyses indicate get3b and srp54 as mutual potentiators that might share terminal insertases. Protein targeting and insertion into membranes are essential for cellular organization and organelle function. The Guided Entry of Tail-anchored (GET) pathway facilitates the post-translational targeting and insertion of tail-anchored (TA) membrane proteins. Arabidopsis thaliana has four GET3 homologues, including AtGET3B and AtGET3D localized to chloroplasts. These photosynthetic organelles possess complex membrane systems, and the mechanisms underlying their protein targeting and membrane biogenesis are not fully understood. This study conducted a comprehensive proteomic analysis of get3b mutant plastids, which displayed significant alterations. Fluorometric based complex assembly as well as CO2 assimilation analyses confirmed that disruption of GET3B function displayed a significant impact on photosystem II assembly as well as carbon fixation, respectively, indicating a functional role in chloroplast biogenesis. Additionally, genetic interactions were found between GET3B and the two component STIC system, which cooperates with the cpSRP pathway which is involved in the co-translational sorting of thylakoid proteins. Further, physical interactions were observed between GET3B and the C-terminus of ALB3 and ALB4 in vitro and the full length proteins in vivo, indicating a role of GET3B in protein targeting and membrane integration within chloroplasts. These findings enhance our understanding of GET3B's involvement in stromal protein targeting and thylakoidal biogenesis.
Collapse
Affiliation(s)
- Uwe Sakamuzi Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany.
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Chiara Kuhlmann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Khushbu Kumari
- Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Roman Ladig
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christopher Grefen
- Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany
| | - Donna Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706-1381, USA
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
3
|
Poerschke S, Oeljeklaus S, Cruz-Zaragoza LD, Schenzielorz A, Dahal D, Hillen HS, Das H, Kremer LS, Valpadashi A, Breuer M, Sattmann J, Richter-Dennerlein R, Warscheid B, Dennerlein S, Rehling P. Identification of TMEM126A as OXA1L-interacting protein reveals cotranslational quality control in mitochondria. Mol Cell 2024; 84:345-358.e5. [PMID: 38199007 PMCID: PMC10805001 DOI: 10.1016/j.molcel.2023.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.
Collapse
Affiliation(s)
- Sabine Poerschke
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany
| | | | - Alexander Schenzielorz
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Drishan Dahal
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Hauke Sven Hillen
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Hirak Das
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany
| | - Laura Sophie Kremer
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Anusha Valpadashi
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Mirjam Breuer
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Johannes Sattmann
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Goettingen Center for Molecular Biosciences, University of Goettingen, 37077 Goettingen, Germany
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany; Cluster of Excellence CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany.
| | - Peter Rehling
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Goettingen Center for Molecular Biosciences, University of Goettingen, 37077 Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Goettingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
4
|
Caddell D, Langenfeld NJ, Eckels MJH, Zhen S, Klaras R, Mishra L, Bugbee B, Coleman-Derr D. Photosynthesis in rice is increased by CRISPR/Cas9-mediated transformation of two truncated light-harvesting antenna. FRONTIERS IN PLANT SCIENCE 2023; 14:1050483. [PMID: 36743495 PMCID: PMC9893291 DOI: 10.3389/fpls.2023.1050483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plants compete for light partly by over-producing chlorophyll in leaves. The resulting high light absorption is an effective strategy for out competing neighbors in mixed communities, but it prevents light transmission to lower leaves and limits photosynthesis in dense agricultural canopies. We used a CRISPR/Cas9-mediated approach to engineer rice plants with truncated light-harvesting antenna (TLA) via knockout mutations to individual antenna assembly component genes CpSRP43, CpSRP54a, and its paralog, CpSRP54b. We compared the photosynthetic contributions of these components in rice by studying the growth rates of whole plants, quantum yield of photosynthesis, chlorophyll density and distribution, and phenotypic abnormalities. Additionally, we investigated a Poales-specific duplication of CpSRP54. The Poales are an important family that includes staple crops such as rice, wheat, corn, millet, and sorghum. Mutations in any of these three genes involved in antenna assembly decreased chlorophyll content and light absorption and increased photosynthesis per photon absorbed (quantum yield). These results have significant implications for the improvement of high leaf-area-index crop monocultures.
Collapse
Affiliation(s)
- Daniel Caddell
- Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service (USDA ARS), Albany, CA, United States
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Noah J. Langenfeld
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Madigan JH. Eckels
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Klaras
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Laxmi Mishra
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Bruce Bugbee
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service (USDA ARS), Albany, CA, United States
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Güngör B, Flohr T, Garg SG, Herrmann JM. The ER membrane complex (EMC) can functionally replace the Oxa1 insertase in mitochondria. PLoS Biol 2022; 20:e3001380. [PMID: 35231030 PMCID: PMC8887752 DOI: 10.1371/journal.pbio.3001380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2-Get1 and Emc6-Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6-Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6-Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.
Collapse
Affiliation(s)
- Büsra Güngör
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sriram G. Garg
- Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
6
|
Zhu D, Xiong H, Wu J, Zheng C, Lu D, Zhang L, Xu X. Protein Targeting Into the Thylakoid Membrane Through Different Pathways. Front Physiol 2022; 12:802057. [PMID: 35095563 PMCID: PMC8790069 DOI: 10.3389/fphys.2021.802057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023] Open
Abstract
In higher plants, chloroplasts are essential semi-autonomous organelles with complex compartments. As part of these sub-organellar compartments, the sheet-like thylakoid membranes contain abundant light-absorbing chlorophylls bound to the light-harvesting proteins and to some of the reaction center proteins. About half of the thylakoid membrane proteins are encoded by nuclear genes and synthesized in the cytosol as precursors before being imported into the chloroplast. After translocation across the chloroplast envelope by the Toc/Tic system, these proteins are subsequently inserted into or translocated across the thylakoid membranes through distinct pathways. The other half of thylakoid proteins are encoded by the chloroplast genome, synthesized in the stroma and integrated into the thylakoid through a cotranslational process. Much progress has been made in identification and functional characterization of new factors involved in protein targeting into the thylakoids, and new insights into this process have been gained. In this review, we introduce the distinct transport systems mediating the translocation of substrate proteins from chloroplast stroma to the thylakoid membrane, and present the recent advances in the identification of novel components mediating these pathways. Finally, we raise some unanswered questions involved in the targeting of chloroplast proteins into the thylakoid membrane, along with perspectives for future research.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Haibo Xiong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Ackermann B, Dünschede B, Pietzenuk B, Justesen BH, Krämer U, Hofmann E, Günther Pomorski T, Schünemann D. Chloroplast Ribosomes Interact With the Insertase Alb3 in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2021; 12:781857. [PMID: 35003166 PMCID: PMC8733628 DOI: 10.3389/fpls.2021.781857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.
Collapse
Affiliation(s)
- Bernd Ackermann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Baucom DR, Furr M, Govind Kumar V, Okoto P, Losey JL, Henry RL, Moradi M, Kumar TKS, Heyes CD. Transient local secondary structure in the intrinsically disordered C-term of the Albino3 insertase. Biophys J 2021; 120:4992-5004. [PMID: 34662559 PMCID: PMC8633824 DOI: 10.1016/j.bpj.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
Albino3 (Alb3) is an integral membrane protein fundamental to the targeting and insertion of light-harvesting complex (LHC) proteins into the thylakoid membrane. Alb3 contains a stroma-exposed C-terminus (Alb3-Cterm) that is responsible for binding the LHC-loaded transit complex before LHC membrane insertion. Alb3-Cterm has been reported to be intrinsically disordered, but precise mechanistic details underlying how it recognizes and binds to the transit complex are lacking, and the functional roles of its four different motifs have been debated. Using a novel combination of experimental and computational techniques such as single-molecule fluorescence resonance energy transfer, circular dichroism with deconvolution analysis, site-directed mutagenesis, trypsin digestion assays, and all-atom molecular dynamics simulations in conjunction with enhanced sampling techniques, we show that Alb3-Cterm contains transient secondary structure in motifs I and II. The excellent agreement between the experimental and computational data provides a quantitatively consistent picture and allows us to identify a heterogeneous structural ensemble that highlights the local and transient nature of the secondary structure. This structural ensemble was used to predict both the inter-residue distance distributions of single molecules and the apparent unfolding free energy of the transient secondary structure, which were both in excellent agreement with those determined experimentally. We hypothesize that this transient local secondary structure may play an important role in the recognition of Alb3-Cterm for the LHC-loaded transit complex, and these results should provide a framework to better understand protein targeting by the Alb3-Oxa1-YidC family of insertases.
Collapse
Affiliation(s)
- Dustin R Baucom
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Mercede Furr
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Patience Okoto
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - James L Losey
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Ralph L Henry
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.
| | | | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|
9
|
Xu X, Ouyang M, Lu D, Zheng C, Zhang L. Protein Sorting within Chloroplasts. Trends Cell Biol 2020; 31:9-16. [PMID: 33121860 DOI: 10.1016/j.tcb.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Chloroplasts have multiple suborganellar membranes. Correct and efficient translocation of chloroplast proteins from their site of synthesis into or across membranes to their functional compartments are fundamental processes. In recent years, several new components and regulatory mechanisms involved in chloroplast protein import and sorting have been explored. Moreover, the formation of liquid-liquid phase transition (LLPT) has been recently reported as a novel mechanism for regulating chloroplast protein sorting. Here, we overview the recent advances of both nuclear- and chloroplast-encoded protein trafficking to their final destination within chloroplasts, and discuss the novel components and regulatory mechanisms of intrachloroplast sorting. Furthermore, we propose that LLPT may be a universal and conserved mechanism for driving organelle protein trafficking and organelle biogenesis.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Min Ouyang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
10
|
Ziehe D, Dünschede B, Schünemann D. Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants. PHOTOSYNTHESIS RESEARCH 2018; 138:303-313. [PMID: 29956039 PMCID: PMC6244792 DOI: 10.1007/s11120-018-0544-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/20/2018] [Indexed: 05/26/2023]
Abstract
The light-harvesting chlorophyll a/b binding proteins (LHCP) belong to a large family of membrane proteins. They form the antenna complexes of photosystem I and II and function in light absorption and transfer of the excitation energy to the photosystems. As nuclear-encoded proteins, the LHCPs are imported into the chloroplast and further targeted to their final destination-the thylakoid membrane. Due to their hydrophobicity, the formation of the so-called 'transit complex' in the stroma is important to prevent their aggregation in this aqueous environment. The posttranslational LHCP targeting mechanism is well regulated through the interaction of various soluble and membrane-associated protein components and includes several steps: the binding of the LHCP to the heterodimeric cpSRP43/cpSRP54 complex to form the soluble transit complex; the docking of the transit complex to the SRP receptor cpFtsY and the Alb3 translocase at the membrane followed by the release and integration of the LHCP into the thylakoid membrane in a GTP-dependent manner. This review summarizes the molecular mechanisms and dynamics behind the posttranslational LHCP targeting to the thylakoid membrane of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
11
|
Jeong J, Baek K, Yu J, Kirst H, Betterle N, Shin W, Bae S, Melis A, Jin E. Deletion of the chloroplast LTD protein impedes LHCI import and PSI-LHCI assembly in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1147-1158. [PMID: 29300952 PMCID: PMC6018721 DOI: 10.1093/jxb/erx457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 05/26/2023]
Abstract
Nuclear-encoded light-harvesting chlorophyll- and carotenoid-binding proteins (LHCPs) are imported into the chloroplast and transported across the stroma to thylakoid membrane assembly sites by the chloroplast signal recognition particle (CpSRP) pathway. The LHCP translocation defect (LTD) protein is essential for the delivery of imported LHCPs to the CpSRP pathway in Arabidopsis. However, the function of the LTD protein in Chlamydomonas reinhardtii has not been investigated. Here, we generated a C. reinhardtii ltd (Crltd) knockout mutant by using CRISPR-Cas9, a new target-specific knockout technology. The Crltd1 mutant showed a low chlorophyll content per cell with an unusual increase in appressed thylakoid membranes and enlarged cytosolic vacuoles. Profiling of thylakoid membrane proteins in the Crltd1 mutant showed a more severe reduction in the levels of photosystem I (PSI) core proteins and absence of functional LHCI compared with those of photosystem II, resulting in a much smaller PSI pool size and diminished chlorophyll antenna size. The lack of CrLTD did not prevent photoautotrophic growth of the cells. These results are substantially different from those for Arabidopsis ltd null mutant, indicating LTD function in LHCP delivery and PSI assembly may not be as stringent in C. reinhardtii as it is in higher plants.
Collapse
Affiliation(s)
- Jooyeon Jeong
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kwangryul Baek
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jihyeon Yu
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, California USA
| | - Nico Betterle
- Department of Plant and Microbial Biology, University of California, Berkeley, California USA
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, Korea
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, California USA
| | - EonSeon Jin
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
12
|
Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris. Sci Rep 2017; 7:17929. [PMID: 29263352 PMCID: PMC5738337 DOI: 10.1038/s41598-017-18221-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022] Open
Abstract
Photosynthesis of microalgae enables conversion of light energy into chemical energy to produce biomass and biomaterials. However, the efficiency of this process must be enhanced, and truncation of light-harvesting complex (LHC) has been suggested to improve photosynthetic efficiency. We reported an EMS-induced mutant (E5) showing partially reduced LHC in Chlorella vulgaris. We determined the mutation by sequencing the whole genome of WT and E5. Augustus gene prediction was used for determining CDS, and non-synonymous changes in E5 were screened. Among these, we found a point mutation (T to A) in a gene homologous to chloroplast signal recognition particle 43 kDa (CpSRP43). The point mutation changed the 102nd valine to glutamic acid (V102E) located in the first chromodomain. Phylogenetic analyses of CpSRP43 revealed that this amino acid was valine or isoleucine in microalgae and plants, suggesting important functions. Transformation of E5 with WT CpSRP43 showed varying degrees of complementation, which was demonstrated by partial recovery of the LHCII proteins to the WT level, and partially restored photosynthetic pigments, photosynthetic ETR, NPQ, and growth, indicating that the V102E mutation was responsible for the reduced LHC in E5.
Collapse
|
13
|
Króliczewski J, Bartoszewski R, Króliczewska B. Chloroplast PetD protein: evidence for SRP/Alb3-dependent insertion into the thylakoid membrane. BMC PLANT BIOLOGY 2017; 17:213. [PMID: 29162052 PMCID: PMC5697057 DOI: 10.1186/s12870-017-1176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/13/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND In thylakoid membrane, each monomer of the dimeric complex of cytochrome b 6 f is comprised of eight subunits that are both nucleus- and plastid-encoded. Proper cytochrome b 6 f complex integration into the thylakoid membrane requires numerous regulatory factors for coordinated transport, insertion and assembly of the subunits. Although, the chloroplast-encoded cytochrome b 6 f subunit IV (PetD) consists of three transmembrane helices, the signal and the mechanism of protein integration into the thylakoid membrane have not been identified. RESULTS Here, we demonstrate that the native PetD subunit cannot incorporate into the thylakoid membranes spontaneously, but that proper integration occurs through the post-translational signal recognition particle (SRP) pathway. Furthermore, we show that PetD insertion into thylakoid membrane involves the coordinated action of cpFTSY, cpSRP54 and ALB3 insertase. CONCLUSIONS PetD subunit integration into the thylakoid membrane is a post-translational and an SRP-dependent process that requires the formation of the cpSRP-cpFtsY-ALB3-PetD complex. This data provides a new insight into the molecular mechanisms by which membrane proteins integration into the thylakoid membrane is accomplished and is not limited to PetD.
Collapse
Affiliation(s)
- Jarosław Króliczewski
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine Wroclaw University of Environmental and Life Sciences, C.K Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
14
|
Ziehe D, Dünschede B, Schünemann D. From bacteria to chloroplasts: evolution of the chloroplast SRP system. Biol Chem 2017; 398:653-661. [PMID: 28076289 DOI: 10.1515/hsz-2016-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post- and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| |
Collapse
|
15
|
Jeong J, Baek K, Kirst H, Melis A, Jin E. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:45-55. [DOI: 10.1016/j.bbabio.2016.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
16
|
Chandrasekar S, Shan SO. Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting. J Biol Chem 2016; 292:397-406. [PMID: 27895124 DOI: 10.1074/jbc.m116.752956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/14/2016] [Indexed: 01/12/2023] Open
Abstract
The universally conserved signal recognition particle (SRP) co-translationally delivers newly synthesized membrane and secretory proteins to the target cellular membrane. The only exception is found in the chloroplast of green plants, where the chloroplast SRP (cpSRP) post-translationally targets light-harvesting chlorophyll a/b-binding proteins (LHCP) to the thylakoid membrane. The mechanism and regulation of this post-translational mode of targeting by cpSRP remain unclear. Using biochemical and biophysical methods, here we show that anionic phospholipids activate the cpSRP receptor cpFtsY to promote rapid and stable cpSRP54·cpFtsY complex assembly. Furthermore, the stromal domain of the Alb3 translocase binds with high affinity to and regulates GTP hydrolysis in the cpSRP54·cpFtsY complex, suggesting that cpFtsY is primarily responsible for initial recruitment of the targeting complex to Alb3. These results suggest a new model for the sequential recruitment, remodeling, and unloading of the targeting complex at membrane translocase sites in the post-translational cpSRP pathway.
Collapse
Affiliation(s)
- Sowmya Chandrasekar
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
17
|
Ziehe D, Dünschede B, Zenker M, Funke S, Nowaczyk MM, Schünemann D. The Chloroplast SRP Systems of Chaetosphaeridium globosum and Physcomitrella patens as Intermediates in the Evolution of SRP-Dependent Protein Transport in Higher Plants. PLoS One 2016; 11:e0166818. [PMID: 27861610 PMCID: PMC5115805 DOI: 10.1371/journal.pone.0166818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/05/2016] [Indexed: 11/19/2022] Open
Abstract
The bacterial signal recognition particle (SRP) mediates the cotranslational targeting of membrane proteins and is a high affinity complex consisting of a SRP54 protein subunit (Ffh) and an SRP RNA. The chloroplast SRP (cpSRP) pathway has adapted throughout evolution to enable the posttranslational targeting of the light harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. In spermatophytes (seed plants), the cpSRP lacks the SRP RNA and is instead formed by a high affinity interaction of the conserved 54-kD subunit (cpSRP54) with the chloroplast-specific cpSRP43 protein. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane. However, in contrast to spermatophytes, plastid SRP RNAs were identified within all streptophyte lineages and in all chlorophyte branches. Furthermore, it was shown that cpSRP43 does not interact with cpSRP54 in chlorophytes (e.g., Chlamydomonas reinhardtii). In this study, we biochemically characterized the cpSRP system of the charophyte Chaetosphaeridium globosum and the bryophyte Physcomitrella patens. Interaction studies demonstrate low affinity binding of cpSRP54 to cpSRP43 (Kd ~10 μM) in Chaetosphaeridium globosum and Physcomitrella patens as well as relatively low affinity binding of cpSRP54 to cpSRP RNA (Kd ~1 μM) in Physcomitrella patens. CpSRP54/cpSRP43 complex formation in charophytes is supported by the finding that specific alterations in the second chromodomain of cpSRP43, that are conserved within charophytes and absent in land plants, do not interfere with cpSRP54 binding. Furthermore, our data show that the elongated apical loop structure of the Physcomitrella patens cpSRP RNA contributes to the low binding affinity between cpSRP54 and the cpSRP RNA.
Collapse
Affiliation(s)
- Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Mira Zenker
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Silke Funke
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Marc M. Nowaczyk
- Cyanobacterial Membrane Protein Complexes, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
18
|
Króliczewski J, Piskozub M, Bartoszewski R, Króliczewska B. ALB3 Insertase Mediates Cytochrome b 6 Co-translational Import into the Thylakoid Membrane. Sci Rep 2016; 6:34557. [PMID: 27698412 PMCID: PMC5048292 DOI: 10.1038/srep34557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
The cytochrome b6 f complex occupies an electrochemically central position in the electron-transport chain bridging the photosynthetic reaction center of PS I and PS II. In plants, the subunits of these thylakoid membrane protein complexes are both chloroplast and nuclear encoded. How the chloroplast-encoded subunits of multi-spanning cytochrome b6 are targeted and inserted into the thylakoid membrane is not fully understood. Experimental approaches to evaluate the cytochrome b6 import mechanism in vivo have been limited to bacterial membranes and were not a part of the chloroplast environment. To evaluate the mechanism governing cytochrome b6 integration in vivo, we performed a comparative analysis of both native and synthetic cytochrome b6 insertion into purified thylakoids. Using biophysical and biochemical methods, we show that cytochrome b6 insertion into the thylakoid membrane is a non-spontaneous co-translational process that involves ALB3 insertase. Furthermore, we provided evidence that CSP41 (chloroplast stem-loop-binding protein of 41 kDa) interacts with RNC-cytochrome b6 complexes, and may be involved in cytochrome b6 (petB) transcript stabilization or processing.
Collapse
Affiliation(s)
- Jarosław Króliczewski
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław Poland
| | - Małgorzata Piskozub
- Amplicon Sp. z o. o., Wrocław, Poland
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
19
|
Plöchinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. FRONTIERS IN PLANT SCIENCE 2016; 7:423. [PMID: 27092151 PMCID: PMC4823308 DOI: 10.3389/fpls.2016.00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 05/17/2023]
Abstract
Assembly of Photosystem (PS) II in plants has turned out to be a highly complex process which, at least in part, occurs in a sequential order and requires many more auxiliary proteins than subunits present in the complex. Owing to the high evolutionary conservation of the subunit composition and the three-dimensional structure of the PSII complex, most plant factors involved in the biogenesis of PSII originated from cyanobacteria and only rarely evolved de novo. Furthermore, in chloroplasts the initial assembly steps occur in the non-appressed stroma lamellae, whereas the final assembly including the attachment of the major LHCII antenna proteins takes place in the grana regions. The stroma lamellae are also the place where part of PSII repair occurs, which very likely also involves assembly factors. In cyanobacteria initial PSII assembly also occurs in the thylakoid membrane, in so-called thylakoid centers, which are in contact with the plasma membrane. Here, we provide an update on the structures, localisations, topologies, functions, expression and interactions of the low molecular mass PSII subunits PsbY, PsbW and the auxiliary factors HCF136, PsbN, TerC and ALB3, assisting in PSII complex assembly and protein insertion into the thylakoid membrane.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Biochemie und Physiologie der Pflanzen, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Lotta von Sydow
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
| | - Wolfgang P. Schröder
- Umeå Plant Science Center and Department of Chemistry, Umeå UniversityUmeå, Sweden
- *Correspondence: Wolfgang P. Schröder,
| | - Jörg Meurer
- Department Biologie I, Molekularbiologie der Pflanzen (Botanik), Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| |
Collapse
|
20
|
Wang P, Grimm B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. PHOTOSYNTHESIS RESEARCH 2015; 126:189-202. [PMID: 25957270 DOI: 10.1007/s11120-015-0154-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
21
|
Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis. PLoS One 2015; 10:e0143249. [PMID: 26600124 PMCID: PMC4657901 DOI: 10.1371/journal.pone.0143249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.
Collapse
|
22
|
Horn A, Hennig J, Ahmed YL, Stier G, Wild K, Sattler M, Sinning I. Structural basis for cpSRP43 chromodomain selectivity and dynamics in Alb3 insertase interaction. Nat Commun 2015; 6:8875. [PMID: 26568381 PMCID: PMC4660199 DOI: 10.1038/ncomms9875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
Canonical membrane protein biogenesis requires co-translational delivery of ribosome-associated proteins to the Sec translocase and depends on the signal recognition particle (SRP) and its receptor (SR). In contrast, high-throughput delivery of abundant light-harvesting chlorophyll a,b-binding proteins (LHCPs) in chloroplasts to the Alb3 insertase occurs post-translationally via a soluble transit complex including the cpSRP43/cpSRP54 heterodimer (cpSRP). Here we describe the molecular mechanisms of tethering cpSRP to the Alb3 insertase by specific interaction of cpSRP43 chromodomain 3 with a linear motif in the Alb3 C-terminal tail. Combining NMR spectroscopy, X-ray crystallography and biochemical analyses, we dissect the structural basis for selectivity of chromodomains 2 and 3 for their respective ligands cpSRP54 and Alb3, respectively. Negative cooperativity in ligand binding can be explained by dynamics in the chromodomain interface. Our study provides a model for membrane recruitment of the transit complex and may serve as a prototype for a functional gain by the tandem arrangement of chromodomains. The chloroplast signal recognition particle delivers LHCPs to the thylakoid membrane by interaction of cpSRP43 with the Alb3 insertase. Here the authors decipher the specific recognition of the Alb3 C-terminal tail within the interface of two communicating chromodomains by structural biochemistry.
Collapse
Affiliation(s)
- Annemarie Horn
- Heidelberg University Biochemistry Center (BZH), INF 328, Heidelberg D-69120, Germany
| | - Janosch Hennig
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching DE-85747, Germany.,Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Yasar L Ahmed
- Heidelberg University Biochemistry Center (BZH), INF 328, Heidelberg D-69120, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), INF 328, Heidelberg D-69120, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, Heidelberg D-69120, Germany
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching DE-85747, Germany.,Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg D-85764, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, Heidelberg D-69120, Germany
| |
Collapse
|
23
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
24
|
Trösch R, Töpel M, Flores-Pérez Ú, Jarvis P. Genetic and Physical Interaction Studies Reveal Functional Similarities between ALBINO3 and ALBINO4 in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:1292-306. [PMID: 26265777 PMCID: PMC4587442 DOI: 10.1104/pp.15.00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/06/2015] [Indexed: 05/20/2023]
Abstract
ALBINO3 (ALB3) is a well-known component of a thylakoid protein-targeting complex that interacts with the chloroplast signal recognition particle (cpSRP) and the cpSRP receptor, chloroplast filamentous temperature-sensitive Y (cpFtsY). Its protein-inserting function has been established mainly for light-harvesting complex proteins, which first interact with the unique chloroplast cpSRP43 component and then are delivered to the ALB3 integrase by a GTP-dependent cpSRP-cpFtsY interaction. In Arabidopsis (Arabidopsis thaliana), a subsequently discovered ALB3 homolog, ALB4, has been proposed to be involved not in light-harvesting complex protein targeting, but instead in the stabilization of the ATP synthase complex. Here, however, we show that ALB3 and ALB4 share significant functional overlap, and that both proteins are required for the efficient insertion of cytochrome f and potentially other subunits of pigment-bearing protein complexes. Genetic and physical interactions between ALB4 and ALB3, and physical interactions between ALB4 and cpSRP, suggest that the two ALB proteins may engage similar sets of interactors for their specific functions. We propose that ALB4 optimizes the insertion of thylakoid proteins by participating in the ALB3-cpSRP pathway for certain substrates (e.g. cytochrome f and the Rieske protein). Although ALB4 has clearly diverged from ALB3 in relation to the partner-recruiting C-terminal domain, our analysis suggests that one putative cpSRP-binding motif has not been entirely lost.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| | - Mats Töpel
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| | - Úrsula Flores-Pérez
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (R.T., M.T., P.J.); andDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., P.J.)
| |
Collapse
|
25
|
Urbischek M, Nick von Braun S, Brylok T, Gügel IL, Richter A, Koskela M, Grimm B, Mulo P, Bölter B, Soll J, Ankele E, Schwenkert S. The extreme Albino3 (Alb3) C terminus is required for Alb3 stability and function in Arabidopsis thaliana. PLANTA 2015; 242:733-746. [PMID: 26105652 DOI: 10.1007/s00425-015-2352-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/11/2015] [Indexed: 05/28/2023]
Abstract
The extreme Alb3 C terminus is important for Alb3 stability in a light dependent manner, but is dispensable for LHCP insertion or D1 synthesis. YidC/Oxa1/Alb3 dependent insertion of membrane proteins is evolutionary conserved among bacteria, mitochondria and chloroplasts. Chloroplasts are challenged by the need to coordinate membrane integration of nuclear encoded, post-translationally targeted proteins into the thylakoids as well as of proteins translated on plastid ribosomes. The pathway facilitating post-translational targeting of the light-harvesting chlorophyll a/b binding proteins involves the chloroplast signal recognition particle, cpSRP54 and cpSRP43, as well as its membrane receptor FtsY and the translocase Alb3. Interaction of cpSRP43 with Alb3 is mediated by the positively charged, stromal exposed C terminus of Alb3. In this study, we utilized an Alb3 T-DNA insertion mutant in Arabidopsis thaliana lacking the last 75 amino acids to elucidate the function of this domain (alb3∆C). However, the truncated Alb3 protein (Alb3∆C) proved to be unstable under standard growth conditions, resulting in a reduction of Alb3∆C to 20 % of wild-type levels. In contrast, accumulation of Alb3∆C was comparable to wild type under low light growth conditions. Alb3∆C mutants grown under low light conditions were only slightly paler than wild type, accumulated almost wild-type levels of light harvesting proteins and were not affected in D1 synthesis, therefore showing that the extreme Alb3 C terminus is dispensable for both, co- and post-translational, protein insertion into the thylakoid membrane. However, reduction of Alb3∆C levels as observed under standard growth conditions resulted not only in a severely diminished accumulation of all thylakoid complexes but also in a strong defect in D1 synthesis and membrane insertion.
Collapse
Affiliation(s)
- Manuela Urbischek
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Piskozub M, Króliczewska B, Króliczewski J. Ribosome nascent chain complexes of the chloroplast-encoded cytochrome b6 thylakoid membrane protein interact with cpSRP54 but not with cpSecY. J Bioenerg Biomembr 2015; 47:265-78. [PMID: 25561393 PMCID: PMC4555342 DOI: 10.1007/s10863-014-9598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
We analysed the interplay between the cpSecY, cpSRP54 and the chloroplast-encoded cytochrome b6 via isolation of chloroplast ribosome nascent chain complexes and the use of cross-linking factors, antibodies and mass spectroscopy analyses. We showed that the cytochrome b6 nascent polypeptide complex is tightly associated with ribosomes and that the translation of cytochrome b6 was discontinuous. The causes of ribosome pausing and the functional significance of this phenomenon may be related to proper protein folding, insertion into thylakoid membranes and the association of cofactors during this process. It was also found that cpSecY was not in the vicinity of cytochrome b6 intermediates during the elongation process and does not act with mature cytochrome b6 after translation. Using the approach of cross-linking during elongation of the cytochrome b6 protein, we showed that cpSRP54 interacts strongly with the elongating nascent chain.
Collapse
Affiliation(s)
- Małgorzata Piskozub
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Króliczewski
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|
27
|
Abstract
The YidC/Alb3/Oxa1 family functions in the insertion and folding of proteins in the bacterial cytoplasmic membrane, the chloroplast thylakoid membrane, and the mitochondrial inner membrane. All members share a conserved region composed of five transmembrane regions. These proteins mediate membrane insertion of an assorted group of proteins, ranging from respiratory subunits in the mitochondria and light-harvesting chlorophyll-binding proteins in chloroplasts to ATP synthase subunits in bacteria. This review discusses the YidC/Alb3/Oxa1 protein family as well as their function in membrane insertion and two new structures of the bacterial YidC, which suggest a mechanism for membrane insertion by this family of insertases.
Collapse
Affiliation(s)
- Seth W Hennon
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raunak Soman
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Lu Zhu
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Ross E Dalbey
- From the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
28
|
Chidgey JW, Linhartová M, Komenda J, Jackson PJ, Dickman MJ, Canniffe DP, Koník P, Pilný J, Hunter CN, Sobotka R. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. THE PLANT CELL 2014; 26:1267-79. [PMID: 24681617 PMCID: PMC4001383 DOI: 10.1105/tpc.114.124495] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls.
Collapse
Affiliation(s)
- Jack W. Chidgey
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Markéta Linhartová
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Philip J. Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mark J. Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Daniel P. Canniffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Peter Koník
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Address correspondence to
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
29
|
Sobotka R. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2014; 119:223-32. [PMID: 23377990 DOI: 10.1007/s11120-013-9797-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/10/2013] [Indexed: 05/20/2023]
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus. Embedded into Chl-binding proteins, Chl molecules play a central role in light harvesting and charge separation within the photosystems. It is critical for the photosynthetic cell to not only ensure the synthesis of a sufficient amount of new Chl-binding proteins but also avoids any misbalance between apoprotein synthesis and the formation of potentially phototoxic Chl molecules. According to the available data, Chl-binding proteins are translated on membrane bound ribosomes and their integration into the membrane is provided by the SecYEG/Alb3 translocon machinery. It appears that the insertion of Chl molecules into growing polypeptide is a prerequisite for the correct folding and finishing of Chl-binding protein synthesis. Although the Chl biosynthetic pathway is fairly well-described on the level of enzymatic steps, a link between Chl biosynthesis and the synthesis of apoproteins remains elusive. In this review, I summarize the current knowledge about this issue putting emphasis on protein-protein interactions. I present a model of the Chl biosynthetic pathway organized into a multi-enzymatic complex and physically attached to the SecYEG/Alb3 translocon. Localization of this hypothetical large biosynthetic centre in the cyanobacterial cell is also discussed as well as regulatory mechanisms coordinating the rate of Chl and apoprotein synthesis.
Collapse
Affiliation(s)
- Roman Sobotka
- Institute of Microbiology CAS, Opatovický mlyn, Třeboň, Czech Republic,
| |
Collapse
|
30
|
The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnol Adv 2014; 32:66-72. [DOI: 10.1016/j.biotechadv.2013.08.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022]
|
31
|
Funes S, Westerburg H, Jaimes-Miranda F, Woellhaf MW, Aguilar-Lopez JL, Janßen L, Bonnefoy N, Kauff F, Herrmann JM. Partial suppression of Oxa1 mutants by mitochondria-targeted signal recognition particle provides insights into the evolution of the cotranslational insertion systems. FEBS J 2013. [PMID: 23198851 DOI: 10.1111/febs.12082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The biogenesis of hydrophobic membrane proteins involves their cotranslational membrane integration in order to prevent their unproductive aggregation. In the cytosol of bacteria and eukaryotes, membrane targeting of ribosomes that synthesize membrane proteins is achieved by signal recognition particles (SRPs) and their cognate membrane-bound receptors. As is evident from the genomes of fully sequenced eukaryotes, mitochondria generally lack an SRP system. Instead, mitochondrial ribosomes are physically associated with the protein insertion machinery in the inner membrane. Accordingly, deletion of ribosome-binding sites on the Oxa1 insertase and the Mba1 ribosome receptor in yeast leads to severe defects in cotranslational protein insertion and results in respiration-deficient mutants. In this study, we expressed mitochondria-targeted versions of the bacterial SRP protein Ffh and its receptor FtsY in these yeast mutants. Interestingly, Ffh was found to bind to the large subunit of mitochondrial ribosomes, and could relieve, to some degree, the defect of these insertion mutants. Although FtsY could also bind to mitochondrial membranes, it did not improve membrane protein biogenesis in this strain, presumably because of its inability to interact with Ffh. Hence, mitochondrial ribosomes are still able to interact physically and functionally with the bacterial SRP system. Our observations are consistent with a model according to which the protein insertion system in mitochondria evolved in three steps. The loss of genes for hydrophilic polypeptides (step 1) allowed the development of ribosome-binding sites on membrane proteins (step 2), which finally made the existence of an SRP-mediated system dispensable (step 3).
Collapse
Affiliation(s)
- Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Ciudad Universitaria, Universidad Nacional Autónoma de México, Distrito Federal, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Träger C, Rosenblad MA, Ziehe D, Garcia-Petit C, Schrader L, Kock K, Vera Richter C, Klinkert B, Narberhaus F, Herrmann C, Hofmann E, Aronsson H, Schünemann D. Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. THE PLANT CELL 2012; 24:4819-36. [PMID: 23275580 PMCID: PMC3556960 DOI: 10.1105/tpc.112.102996] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of the conserved SRP54 and the SRP receptor, FtsY, are present in higher plant chloroplasts. In this study, we analyzed the phylogenetic distribution of SRP components in photosynthetic organisms to elucidate the evolution of the SRP system. We identified conserved plastid SRP RNAs within all nonspermatophyte land plant lineages and in all chlorophyte branches. Furthermore, we show the simultaneous presence of cpSRP43 in these organisms. The function of this novel SRP system was biochemically and structurally characterized in the moss Physcomitrella patens. We show that P. patens chloroplast SRP (cpSRP) RNA binds cpSRP54 but has lost the ability to significantly stimulate the GTPase cycle of SRP54 and FtsY. Furthermore, the crystal structure at 1.8-Å resolution and the nucleotide specificity of P. patens cpFtsY was determined and compared with bacterial FtsY and higher plant chloroplast FtsY. Our data lead to the view that the P. patens cpSRP system occupies an intermediate position in the evolution from bacterial-type SRP to higher plant-type cpSRP system.
Collapse
Affiliation(s)
- Chantal Träger
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Dominik Ziehe
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Christel Garcia-Petit
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lukas Schrader
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Klaus Kock
- Physical Chemistry I, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | - Birgit Klinkert
- Microbial Biology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | - Eckhard Hofmann
- Protein Crystallography, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
- Address correspondence to
| |
Collapse
|
34
|
Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A. Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. PLANT PHYSIOLOGY 2012; 160:2251-60. [PMID: 23043081 PMCID: PMC3510145 DOI: 10.1104/pp.112.206672] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/03/2012] [Indexed: 05/17/2023]
Abstract
The truncated light-harvesting antenna size3 (tla3) DNA insertional transformant of Chlamydomonas reinhardtii is a chlorophyll-deficient mutant with a lighter green phenotype, a lower chlorophyll (Chl) per cell content, and higher Chl a/b ratio than corresponding wild-type strains. Functional analyses revealed a higher intensity for the saturation of photosynthesis and greater light-saturated photosynthetic activity in the tla3 mutant than in the wild type and a Chl antenna size of the photosystems that was only about 40% of that in the wild type. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western-blot analyses showed that the tla3 strain was deficient in the Chl a/b light-harvesting complex. Molecular and genetic analyses revealed a single plasmid insertion in chromosome 4 of the tla3 nuclear genome, causing deletion of predicted gene g5047 and plasmid insertion within the fourth intron of downstream-predicted gene g5046. Complementation studies defined that gene g5047 alone was necessary and sufficient to rescue the tla3 mutation. Gene g5047 encodes a C. reinhardtii homolog of the chloroplast-localized SRP43 signal recognition particle, whose occurrence and function in green microalgae has not hitherto been investigated. Biochemical analysis showed that the nucleus-encoded and chloroplast-localized CrCpSRP43 protein specifically operates in the assembly of the peripheral components of the Chl a/b light-harvesting antenna. This work demonstrates that cpsrp43 deletion in green microalgae can be employed to generate tla mutants with a substantially diminished Chl antenna size. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions.
Collapse
Affiliation(s)
- Henning Kirst
- Plant and Microbial Biology, University of California, Berkeley, California 94720
| | | | - Andreas Zurbriggen
- Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Thilo Ruehle
- Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Anastasios Melis
- Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
35
|
Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, Warscheid B, Drepper F, Koch HG. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 2011; 23:464-79. [PMID: 22160593 PMCID: PMC3268725 DOI: 10.1091/mbc.e11-07-0590] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The YidC insertase also integrates multispanning membrane proteins that had been considered to be exclusively SecYEG dependent. Only membrane proteins that require SecA can be inserted only via SecYEG. Targeting to YidC is SRP dependent, and the C-terminus of YidC cross-links to SRP, FtsY, and ribosomal subunits. Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.
Collapse
Affiliation(s)
- Thomas Welte
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dünschede B, Bals T, Funke S, Schünemann D. Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J Biol Chem 2011; 286:35187-95. [PMID: 21832051 DOI: 10.1074/jbc.m111.250746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.
Collapse
Affiliation(s)
- Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
37
|
Funes S, Kauff F, van der Sluis EO, Ott M, Herrmann JM. Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol Chem 2011; 392:13-9. [PMID: 21194367 DOI: 10.1515/bc.2011.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the YidC/Oxa1/Alb3 protein family facilitate the insertion, folding and assembly of proteins of the inner membranes of bacteria and mitochondria and the thylakoid membrane of plastids. All homologs share a conserved hydrophobic core region comprising five transmembrane domains. On the basis of phylogenetic analyses, six subgroups of the family can be distinguished which presumably arose from three independent gene duplications followed by functional specialization. During evolution of bacteria, mitochondria and chloroplasts, subgroup-specific regions were added to the core domain to facilitate the association with ribosomes or other components contributing to the substrate spectrum of YidC/Oxa1/Alb3 proteins.
Collapse
Affiliation(s)
- Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Mexico D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
38
|
LTD is a protein required for sorting light-harvesting chlorophyll-binding proteins to the chloroplast SRP pathway. Nat Commun 2011; 2:277. [DOI: 10.1038/ncomms1278] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/16/2011] [Indexed: 11/08/2022] Open
|
39
|
Lewis NE, Marty NJ, Kathir KM, Rajalingam D, Kight AD, Daily A, Kumar TKS, Henry RL, Goforth RL. A dynamic cpSRP43-Albino3 interaction mediates translocase regulation of chloroplast signal recognition particle (cpSRP)-targeting components. J Biol Chem 2010; 285:34220-30. [PMID: 20729200 PMCID: PMC2962520 DOI: 10.1074/jbc.m110.160093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/16/2010] [Indexed: 12/31/2022] Open
Abstract
The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Daily
- Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | | | | | | |
Collapse
|
40
|
Interplay between the cpSRP pathway components, the substrate LHCP and the translocase Alb3: an in vivo and in vitro study. FEBS Lett 2010; 584:4138-44. [PMID: 20828566 DOI: 10.1016/j.febslet.2010.08.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
The chloroplast signal recognition particle (cpSRP) and its receptor, cpFtsY, posttranslationally target the nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs) to the translocase Alb3 in the thylakoid membrane. In this study, we analyzed the interplay between the cpSRP pathway components, the substrate protein LHCP and the translocase Alb3 by using in vivo and in vitro techniques. We propose that cpSRP43 is crucial for the binding of LHCP-loaded cpSRP and cpFtsY to Alb3. In addition, our data suggest that a direct interaction between Alb3 and LHCP contributes to the formation of this complex.
Collapse
|
41
|
Wang P, Dalbey RE. Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:866-75. [PMID: 20800571 DOI: 10.1016/j.bbamem.2010.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
The evolutionarily conserved YidC/Oxa1p/Alb3 family of proteins plays important roles in the membrane biogenesis in bacteria, mitochondria, and chloroplasts. The members in this family function as novel membrane protein insertases, chaperones, and assembly factors for transmembrane proteins, including energy transduction complexes localized in the bacterial and mitochondrial inner membrane, and in the chloroplast thylakoid membrane. In this review, we will present recent progress with this class of proteins in membrane protein biogenesis and discuss the structure/function relationships. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
42
|
Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport. Eur J Cell Biol 2010; 89:965-73. [PMID: 20709425 DOI: 10.1016/j.ejcb.2010.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chloroplast proteome comprises nuclear- and plastome-encoded proteins. In order to function correctly these proteins must be transported, either cotranslationally or posttranslationally, to their final destination in the chloroplast. Here the chloroplast signal recognition particle (cpSRP) which is present in two different stromal pools plays an essential role. On the one hand, the conserved 54kDa subunit (cpSRP54) is associated with 70S ribosomes to function in the cotranslational transport of the plastid-encoded thylakoid membrane protein D1. On the other hand, the cpSRP consists of cpSRP54 and a unique 43kDa subunit (cpSRP43) and facilitates the transport of nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs), the most abundant membrane proteins of the thylakoids. In addition to cpSRP, the cpSRP receptor cpFtsY and the thylakoid membrane protein Alb3 are required for posttranslational LHCP integration in a GTP-dependent manner. In contrast to the universally conserved cytosolic SRP, the chloroplast SRP of higher plants lacks an SRP-RNA component. Interestingly, cpSRP-RNA genes have been identified in the plastome of lower plants, indicating that their cpSRP structure resembles the cytosolic SRP.
Collapse
|
43
|
Falk S, Ravaud S, Koch J, Sinning I. The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J Biol Chem 2009; 285:5954-62. [PMID: 20018841 DOI: 10.1074/jbc.m109.084996] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions.
Collapse
Affiliation(s)
- Sebastian Falk
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Benz M, Bals T, Gügel IL, Piotrowski M, Kuhn A, Schünemann D, Soll J, Ankele E. Alb4 of Arabidopsis promotes assembly and stabilization of a non chlorophyll-binding photosynthetic complex, the CF1CF0-ATP synthase. MOLECULAR PLANT 2009; 2:1410-24. [PMID: 19995738 DOI: 10.1093/mp/ssp095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
All members of the YidC/Oxa1/Alb3 protein family are evolutionarily conserved and appear to function in membrane protein integration and protein complex stabilization. Here, we report on a second thylakoidal isoform of Alb3, named Alb4. Analysis of Arabidopsis knockout mutant lines shows that Alb4 is required in assembly and/or stability of the CF1CF0-ATP synthase (ATPase). alb4 mutant lines not only have reduced steady-state levels of ATPase subunits, but also their assembly into high-molecular-mass complexes is altered, leading to a reduction of ATP synthesis in the mutants. Moreover, we show that Alb4 but not Alb3 physically interacts with the subunits CF1beta and CF0II. Summarizing, the data indicate that Alb4 functions to stabilize or promote assembly of CF1 during its attachment to the membrane-embedded CF0 part.
Collapse
Affiliation(s)
- Monique Benz
- Department of Biologie I-Botanik, Biozentrum Ludwig-Maximillians-University Munich, Grosshadernerstrasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The Signal Recognition Particle (SRP) plays a critical role in the sorting of nascent secretory and membrane proteins. Remarkably, this function has been conserved from bacteria, where SRP delivers proteins to the inner membrane, through to eukaryotes, where SRP is required for targeting of proteins to the endoplasmic reticulum. This review focuses on present understanding of SRP structure and function and the relationship between the two. Furthermore, the similarities and differences in the structure, function and cellular role of SRP in bacteria, chloroplasts, fungi and mammals will be stressed.
Collapse
Affiliation(s)
- Martin R Pool
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
46
|
Marty NJ, Rajalingam D, Kight AD, Lewis NE, Fologea D, Kumar TKS, Henry RL, Goforth RL. The membrane-binding motif of the chloroplast signal recognition particle receptor (cpFtsY) regulates GTPase activity. J Biol Chem 2009; 284:14891-903. [PMID: 19293157 PMCID: PMC2685671 DOI: 10.1074/jbc.m900775200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/16/2009] [Indexed: 11/06/2022] Open
Abstract
The chloroplast signal recognition particle (cpSRP) and its receptor (cpFtsY) function in thylakoid biogenesis to target integral membrane proteins to thylakoids. Unlike cytosolic SRP receptors in eukaryotes, cpFtsY partitions between thylakoid membranes and the soluble stroma. Based on sequence alignments, a membrane-binding motif identified in Escherichia coli FtsY appears to be conserved in cpFtsY, yet whether the proposed motif is responsible for the membrane-binding function of cpFtsY has yet to be shown experimentally. Our studies show that a small N-terminal region in cpFtsY stabilizes a membrane interaction critical to cpFtsY function in cpSRP-dependent protein targeting. This membrane-binding motif is both necessary and sufficient to direct cpFtsY and fused passenger proteins to thylakoids. Our results demonstrate that the cpFtsY membrane-binding motif may be functionally replaced by the corresponding region from E. coli, confirming that the membrane-binding motif is conserved among organellar and prokaryotic homologs. Furthermore, the capacity of cpFtsY for lipid binding correlates with liposome-induced GTP hydrolysis stimulation. Mutations that debilitate the membrane-binding motif in cpFtsY result in higher rates of GTP hydrolysis, suggesting that negative regulation is provided by the intact membrane-binding region in the absence of a bilayer. Furthermore, NMR and CD structural studies of the N-terminal region and the analogous region in the E. coli SRP receptor revealed a conformational change in secondary structure that takes place upon lipid binding. These studies suggest that the cpFtsY membrane-binding motif plays a critical role in the intramolecular communication that regulates cpSRP receptor functions at the membrane.
Collapse
Affiliation(s)
- Naomi J Marty
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Aldridge C, Cain P, Robinson C. Protein transport in organelles: Protein transport into and across the thylakoid membrane. FEBS J 2009; 276:1177-86. [PMID: 19187234 DOI: 10.1111/j.1742-4658.2009.06875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chloroplast thylakoid is the most abundant membrane system in nature, and is responsible for the critical processes of light capture, electron transport and photophosphorylation. Most of the resident proteins are imported from the cytosol and then transported into or across the thylakoid membrane. This minireview describes the multitude of pathways used for these proteins. We discuss the huge differences in the mechanisms involved in the secretory and twin-arginine translocase pathways used for the transport of proteins into the lumen, with an emphasis on the differing substrate conformations and energy requirements. We also discuss the rationale for the use of two different systems for membrane protein insertion: the signal recognition particle pathway and the so-called spontaneous pathway. The recent crystallization of a key chloroplast signal recognition particle component provides new insights into this rather unique form of signal recognition particle.
Collapse
Affiliation(s)
- Cassie Aldridge
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
48
|
Bonnefoy N, Fiumera HL, Dujardin G, Fox TD. Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:60-70. [PMID: 18522806 PMCID: PMC2658530 DOI: 10.1016/j.bbamcr.2008.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.
Collapse
Affiliation(s)
- Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Heather L. Fiumera
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thomas D. Fox
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
49
|
Asakura Y, Kikuchi S, Nakai M. Non-identical contributions of two membrane-bound cpSRP components, cpFtsY and Alb3, to thylakoid biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:1007-17. [PMID: 18764927 DOI: 10.1111/j.1365-313x.2008.03659.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The insertion of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane of the chloroplast is cpSRP-dependent, and requires the stromal components cpSRP54 and cpSRP43, the membrane-bound SRP receptor cpFtsY and the integral membrane protein Alb3. Previous studies demonstrated that the Arabidopsis mutant lacking both cpSRP54 and cpSRP43 had pale yellow leaves, but was viable, whereas the mutants lacking Alb3 exhibit an albino phenotype that is more severe and seedling lethality. We previously showed that a maize mutant lacking cpFtsY had a pale yellow-green phenotype and was seedling lethal. To compare the in vivo requirements of cpFtsY and Alb3 in thylakoid biogenesis in greater detail, we isolated Arabidopsis null mutants of cpftsY, and performed biochemical comparisons with the Arabidopsis alb3 mutant. Both cpftsY and alb3 null mutants were seedling lethal on a synthetic medium lacking sucrose, whereas on a medium supplemented with sucrose, they were able to grow to later developmental stages, but were mostly infertile. cpftsY mutant plants had yellow leaves in which the levels of LHCPs were reduced to 10-33% compared with wild type. In contrast, alb3 had yellowish white leaves, and the LHCP levels were less than or equal to 10% of those of wild type. Intriguingly, whereas accumulation of the Sec and Tat machineries were normal in both mutants, the Sec pathway substrate Cyt f was more severely decreased in the cpftsY mutant than in alb3, which may indicate a functional link between cpFtsY and Sec translocation machinery. These results suggest that cpFtsY and Alb3 have essentially similar, but slightly distinct, contributions to thylakoid biogenesis.
Collapse
Affiliation(s)
- Yukari Asakura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
50
|
Kathir KM, Rajalingam D, Sivaraja V, Kight A, Goforth RL, Yu C, Henry R, Kumar TKS. Assembly of chloroplast signal recognition particle involves structural rearrangement in cpSRP43. J Mol Biol 2008; 381:49-60. [PMID: 18586266 DOI: 10.1016/j.jmb.2008.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
Abstract
Signal recognition particle in chloroplasts (cpSRP) exhibits the unusual ability to bind and target full-length proteins to the thylakoid membrane. Unlike cytosolic SRPs in prokaryotes and eukaryotes, cpSRP lacks an RNA moiety and functions as a heterodimer composed of a conserved 54-kDa guanosine triphosphatase (cpSRP54) and a unique 43-kDa subunit (cpSRP43). Assembly of the cpSRP heterodimer is a prerequisite for post-translational targeting activities and takes place through interactions between chromatin modifier domain 2 (CD2) of cpSRP43 and a unique 10-amino-acid region in cpSRP54 (cpSRP54(pep)). We have used multidimensional NMR spectroscopy and other biophysical methods to examine the assembly and structure of the cpSRP43-cpSRP54 interface. Our data show that CD2 of cpSRP43 binds to cpSRP54(pep) in a 1:1 stoichiometry with an apparent K(d) of approximately 1.06 muM. Steady-state fluorescence and far-UV circular dichroism data suggest that the CD2-cpSRP54(pep) interaction causes significant conformational changes in both CD2 and the peptide. Comparison of the three-dimensional solution structures of CD2 alone and in complex with cpSRP54(pep) shows that significant structural changes are induced in CD2 in order to establish a binding interface contributed mostly by residues in the N-terminal segment of CD2 (Phe5-Val10) and an arginine doublet (Arg536 and Arg537) in the cpSRP54 peptide. Taken together, our results provide new insights into the mechanism of cpSRP assembly and the structural forces that stabilize the functionally critical cpSRP43-cpSRP54 interaction.
Collapse
|