1
|
Zhou X, Weng SY, Bell SP, Amon A. A noncanonical GTPase signaling mechanism controls exit from mitosis in budding yeast. Proc Natl Acad Sci U S A 2024; 121:e2413873121. [PMID: 39475649 PMCID: PMC11551315 DOI: 10.1073/pnas.2413873121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 11/06/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, exit from mitosis is coupled to spindle position to ensure successful genome partitioning between mother and daughter cells. This coupling occurs through a GTPase signaling cascade known as the mitotic exit network (MEN). The MEN senses spindle position via a Ras-like GTPase Tem1 which localizes to the spindle pole bodies (SPBs, yeast equivalent of centrosomes) during anaphase and signals to its effector protein kinase Cdc15. How Tem1 couples the status of spindle position to MEN activation is not fully understood. Here, we show that Cdc15 has a relatively weak preference for Tem1GTP and Tem1's nucleotide state does not change upon MEN activation. Instead, we find that Tem1's nucleotide cycle establishes a localization-based concentration difference in the cell where only Tem1GTP is recruited to the SPB, and spindle position regulates the MEN by controlling Tem1 localization to the SPB. SPB localization of Tem1 primarily functions to promote Tem1-Cdc15 interaction for MEN activation by increasing the effective concentration of Tem1. Consistent with this model, we demonstrate that artificially tethering Tem1 to the SPB or concentrating Tem1 in the cytoplasm with genetically encoded multimeric nanoparticles could bypass the requirement of Tem1GTP and correct spindle position for MEN activation. This localization/concentration-based GTPase signaling mechanism for Tem1 differs from the canonical Ras-like GTPase signaling paradigm and is likely relevant to other localization-based signaling scenarios.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
- Department of Biology, New York University, New York, NY 10003
| | - Shannon Y Weng
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Stephen P Bell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Angelika Amon
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
2
|
Zhou X, Weng SY, Bell SP, Amon A. A noncanonical GTPase signaling mechanism controls exit from mitosis in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594582. [PMID: 38798491 PMCID: PMC11118470 DOI: 10.1101/2024.05.16.594582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In the budding yeast Saccharomyces cerevisiae, exit from mitosis is coupled to spindle position to ensure successful genome partitioning between mother and daughter cell. This coupling occurs through a GTPase signaling cascade known as the mitotic exit network (MEN). The MEN senses spindle position via a Ras-like GTPase Tem1 which localizes to the spindle pole bodies (SPBs, yeast equivalent of centrosomes) during anaphase and signals to its effector protein kinase Cdc15. How Tem1 couples the status of spindle position to MEN activation is not fully understood. Here, we show that Cdc15 has a relatively weak preference for Tem 1 GTP and Tem1's nucleotide state does not change upon MEN activation. Instead, we find that Tem1's nucleotide cycle establishes a localization-based concentration difference in the cell where only Tem 1 GTP is recruited to the SPB, and spindle position regulates the MEN by controlling Tem1 localization. SPB localization of Tem1 primarily functions to promote Tem1-Cdc15 interaction for MEN activation by increasing the effective concentration of Tem1. Consistent with this model, we demonstrate that artificially tethering Tem1 to the SPB or concentrating Tem1 in the cytoplasm with genetically encoded multimeric nanoparticles could bypass the requirement of Tem 1 GTP and correct spindle position for MEN activation. This localization/concentration-based GTPase signaling mechanism for Tem1 differs from the canonical Ras-like GTPase signaling paradigm and is likely relevant to other localization-based signaling scenarios.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shannon Y. Weng
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P. Bell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angelika Amon
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Huda M, Bektas SN, Bekdas B, Caydasi AK. The signalling lipid PI3,5P 2 is essential for timely mitotic exit. Open Biol 2023; 13:230125. [PMID: 37751887 PMCID: PMC10522413 DOI: 10.1098/rsob.230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Coordination of mitotic exit with chromosome segregation is key for successful mitosis. Mitotic exit in budding yeast is executed by the mitotic exit network (MEN), which is negatively regulated by the spindle position checkpoint (SPOC). SPOC kinase Kin4 is crucial for SPOC activation in response to spindle positioning defects. Here, we report that the lysosomal signalling lipid phosphatidylinositol-3,5-bisphosphate (PI3,5P2) has an unanticipated role in the timely execution of mitotic exit. We show that the lack of PI3,5P2 causes a delay in mitotic exit, whereas elevated levels of PI3,5P2 accelerates mitotic exit in mitotic exit defective cells. Our data indicate that PI3,5P2 promotes mitotic exit in part through impairment of Kin4. This process is largely dependent on the known PI3,5P2 effector protein Atg18. Our work thus uncovers a novel link between PI3,5P2 and mitotic exit.
Collapse
Affiliation(s)
- Mariam Huda
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Baris Bekdas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
de Oya IG, Manzano-López J, Álvarez-Llamas A, Vázquez-Aroca MDLP, Cepeda-García C, Monje-Casas F. Characterization of a novel interaction of the Nup159 nucleoporin with asymmetrically localized spindle pole body proteins and its link with autophagy. PLoS Biol 2023; 21:e3002224. [PMID: 37535687 PMCID: PMC10437821 DOI: 10.1371/journal.pbio.3002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/18/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Both the spindle microtubule-organizing centers and the nuclear pore complexes (NPCs) are convoluted structures where many signaling pathways converge to coordinate key events during cell division. Interestingly, despite their distinct molecular conformation and overall functions, these structures share common components and collaborate in the regulation of essential processes. We have established a new link between microtubule-organizing centers and nuclear pores in budding yeast by unveiling an interaction between the Bfa1/Bub2 complex, a mitotic exit inhibitor that localizes on the spindle pole bodies, and the Nup159 nucleoporin. Bfa1/Bub2 association with Nup159 is reduced in metaphase to not interfere with proper spindle positioning. However, their interaction is stimulated in anaphase and assists the Nup159-dependent autophagy pathway. The asymmetric localization of Bfa1/Bub2 during mitosis raises the possibility that its interaction with Nup159 could differentially promote Nup159-mediated autophagic processes, which might be relevant for the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Inés García de Oya
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - Alejandra Álvarez-Llamas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - María de la Paz Vázquez-Aroca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - Cristina Cepeda-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) / Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
5
|
Miao P, Mao X, Chen S, Abubakar YS, Li Y, Zheng W, Zhou J, Wang Z, Zheng H. The mitotic exit mediated by small GTPase Tem1 is essential for the pathogenicity of Fusarium graminearum. PLoS Pathog 2023; 19:e1011255. [PMID: 36928713 PMCID: PMC10047555 DOI: 10.1371/journal.ppat.1011255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The mitotic exit is a key step in cell cycle, but the mechanism of mitotic exit network in the wheat head blight fungus Fusarium graminearum remains unclear. F. graminearum infects wheat spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. In this study, we found that a small GTPase FgTem1 plays an important role in F. graminearum pathogenicity and functions in regulating the formation of infection structures and invasive hyphal growth on wheat spikelets and wheat coleoptiles, but plays only little roles in vegetative growth and conidiation of the phytopathogen. FgTem1 localizes to both the inner nuclear periphery and the spindle pole bodies, and negatively regulates mitotic exit in F. graminearum. Furthermore, the regulatory mechanisms of FgTem1 have been further investigated by high-throughput co-immunoprecipitation and genetic strategies. The septins FgCdc10 and FgCdc11 were demonstrated to interact with the dominant negative form of FgTem1, and FgCdc11 was found to regulate the localization of FgTem1. The cell cycle arrest protein FgBub2-FgBfa1 complex was shown to act as the GTPase-activating protein (GAP) for FgTem1. We further demonstrated that a direct interaction exists between FgBub2 and FgBfa1 which crucially promotes conidiation, pathogenicity and DON production, and negatively regulates septum formation and nuclear division in F. graminearum. Deletions of FgBUB2 and FgBFA1 genes caused fewer perithecia and immature asci formations, and dramatically down-regulated trichothecene biosynthesis (TRI) gene expressions. Double deletion of FgBUB2/FgBFA1 genes showed that FgBUB2 and FgBFA1 have little functional redundancy in F. graminearum. In summary, we systemically demonstrated that FgTem1 and its GAP FgBub2-FgBfa1 complex are required for fungal development and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Pengfei Miao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yulong Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- * E-mail:
| |
Collapse
|
6
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
7
|
The N-Terminal Domain of Bfa1 Coordinates Mitotic Exit Independent of GAP Activity in Saccharomyces cerevisiae. Cells 2022; 11:cells11142179. [PMID: 35883622 PMCID: PMC9316867 DOI: 10.3390/cells11142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
The spindle position checkpoint (SPOC) of budding yeast delays mitotic exit in response to misaligned spindles to ensure cell survival and the maintenance of genomic stability. The GTPase-activating protein (GAP) complex Bfa1–Bub2, a key SPOC component, inhibits the GTPase Tem1 to induce mitotic arrest in response to DNA and spindle damage, as well as spindle misorientation. However, previous results strongly suggest that Bfa1 exerts a GAP-independent function in blocking mitotic exit in response to misaligned spindles. Thus, the molecular mechanism by which Bfa1 controls mitotic exit in response to misaligned spindles remains unclear. Here, we observed that overexpression of the N-terminal domain of Bfa1 (Bfa1-D16), which lacks GAP activity and cannot localize to the spindle pole body (SPB), induced cell cycle arrest along with hyper-elongation of astral microtubules (aMTs) as Bfa1 overexpression in Δbub2. We found that Δbub2 cells overexpressing Bfa1 or Bfa1-D16 inhibited activation of Mob1, which is responsible for mitotic exit. In anaphase-arrested cells, Bfa1-D16 overexpression inhibited Tem1 binding to the SPB as well as Bfa1 overexpression. Additionally, endogenous levels of Bfa1-D16 showed minor SPOC activity that was not regulated by Kin4. These results suggested that Bfa1-D16 may block mitotic exit through inhibiting Tem1 activity outside of SPBs. Alternatively, Bfa1-D16 dispersed out of SPBs may block Tem1 binding to SPBs by physically interacting with Tem1 as previously reported. Moreover, we observed hyper-elongated aMTs in tem1-3, cdc15-2, and dbf2-2 mutants that induce anaphase arrest and cannot undergo mitotic exit at restrictive temperatures, suggesting that aMT dynamics are closely related to the regulation of mitotic exit. Altogether, these observations suggest that Bfa1 can control the SPOC independent of its GAP activity and SPB localization.
Collapse
|
8
|
SIN-like Pathway Kinases Regulate the End of Mitosis in the Methylotrophic Yeast Ogataea polymorpha. Cells 2022; 11:cells11091519. [PMID: 35563825 PMCID: PMC9105162 DOI: 10.3390/cells11091519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.
Collapse
|
9
|
Vannini M, Mingione VR, Meyer A, Sniffen C, Whalen J, Seshan A. A Novel Hyperactive Nud1 Mitotic Exit Network Scaffold Causes Spindle Position Checkpoint Bypass in Budding Yeast. Cells 2021; 11:46. [PMID: 35011608 PMCID: PMC8750578 DOI: 10.3390/cells11010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.
Collapse
Affiliation(s)
- Michael Vannini
- Boston University School of Medicine, Boston, MA 02118, USA;
| | - Victoria R. Mingione
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA;
| | | | - Courtney Sniffen
- Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Jenna Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| |
Collapse
|
10
|
Kocakaplan D, Karabürk H, Dilege C, Kirdök I, Bektas SN, Caydasi AK. Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. eLife 2021; 10:72833. [PMID: 34633288 PMCID: PMC8577847 DOI: 10.7554/elife.72833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5, and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.
Collapse
Affiliation(s)
- Dilara Kocakaplan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Hüseyin Karabürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Cansu Dilege
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Idil Kirdök
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
11
|
Devault A, Piatti S. Downregulation of the Tem1 GTPase by Amn1 after cytokinesis involves both nuclear import and SCF-mediated degradation. J Cell Sci 2021; 134:272157. [PMID: 34518877 DOI: 10.1242/jcs.258972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
At mitotic exit the cell cycle engine is reset to allow crucial processes, such as cytokinesis and replication origin licensing, to take place before a new cell cycle begins. In budding yeast, the cell cycle clock is reset by a Hippo-like kinase cascade called the mitotic exit network (MEN), whose activation is triggered at spindle pole bodies (SPBs) by the Tem1 GTPase. Yet, MEN activity must be extinguished once MEN-dependent processes have been accomplished. One factor contributing to switching off the MEN is the Amn1 protein, which binds Tem1 and inhibits it through an unknown mechanism. Here, we show that Amn1 downregulates Tem1 through a dual mode of action. On one side, it evicts Tem1 from SPBs and escorts it into the nucleus. On the other, it promotes Tem1 degradation as part of a Skp, Cullin and F-box-containing (SCF) ubiquitin ligase. Tem1 inhibition by Amn1 takes place after cytokinesis in the bud-derived daughter cell, consistent with its asymmetric appearance in the daughter cell versus the mother cell. This dual mechanism of Tem1 inhibition by Amn1 may contribute to the rapid extinguishing of MEN activity once it has fulfilled its functions.
Collapse
Affiliation(s)
- Alain Devault
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS (Centre National de la Recherche Scientifique), 1919 Route de Mende, 34293 Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS (Centre National de la Recherche Scientifique), 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
12
|
Howell RSM, Klemm C, Thorpe PH, Csikász-Nagy A. Unifying the mechanism of mitotic exit control in a spatiotemporal logical model. PLoS Biol 2020; 18:e3000917. [PMID: 33180788 PMCID: PMC7685450 DOI: 10.1371/journal.pbio.3000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/24/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Collapse
Affiliation(s)
- Rowan S M Howell
- The Francis Crick Institute, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
13
|
Rincón AM, Monje-Casas F. A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 2020; 19:1405-1421. [PMID: 32401610 DOI: 10.1080/15384101.2020.1754586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Ana M Rincón
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Dpto. de Genética / Universidad de Sevilla , Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Consejo Superior de Investigaciones Científicas (CSIC) , Sevilla, Spain
| |
Collapse
|
14
|
Campbell IW, Zhou X, Amon A. Spindle pole bodies function as signal amplifiers in the Mitotic Exit Network. Mol Biol Cell 2020; 31:906-916. [PMID: 32074005 PMCID: PMC7185974 DOI: 10.1091/mbc.e19-10-0584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Mitotic Exit Network (MEN), a budding yeast Ras-like signal transduction cascade, translates nuclear position into a signal to exit from mitosis. Here we describe how scaffolding the MEN onto spindle pole bodies (SPB—centrosome equivalent) allows the MEN to couple the final stages of mitosis to spindle position. Through the quantitative analysis of the localization of MEN components, we determined the relative importance of MEN signaling from the SPB that is delivered into the daughter cell (dSPB) during anaphase and the SPB that remains in the mother cell. Movement of half of the nucleus into the bud during anaphase causes the active form of the MEN GTPase Tem1 to accumulate at the dSPB. In response to Tem1’s activity at the dSPB, the MEN kinase cascade, which functions downstream of Tem1, accumulates at both SPBs. This localization to both SPBs serves an important role in promoting efficient exit from mitosis. Cells that harbor only one SPB delay exit from mitosis. We propose that MEN signaling is initiated by Tem1 at the dSPB and that association of the downstream MEN kinases with both SPBs serves to amplify MEN signaling, enabling the timely exit from mitosis.
Collapse
Affiliation(s)
- Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
15
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
16
|
Campbell IW, Zhou X, Amon A. The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. eLife 2019; 8:41139. [PMID: 30672733 PMCID: PMC6363386 DOI: 10.7554/elife.41139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
GTPase signal transduction pathways control cellular decision making by integrating multiple cellular events into a single signal. The Mitotic Exit Network (MEN), a Ras-like GTPase signaling pathway, integrates spatial and temporal cues to ensure that cytokinesis only occurs after the genome has partitioned between mother and daughter cells during anaphase. Here we show that signal integration does not occur at a single step of the pathway. Rather, sequential components of the pathway are controlled in series by different signals. The spatial signal, nuclear position, regulates the MEN GTPase Tem1. The temporal signal, commencement of anaphase, is mediated by mitotic cyclin-dependent kinase (CDK) phosphorylation of the GTPase's downstream kinases. We propose that integrating multiple signals through sequential steps in the GTPase pathway represents a generalizable principle in GTPase signaling and explains why intracellular signal transmission is a multi-step process. Serial signal integration rather than signal amplification makes multi-step signal transduction necessary.
Collapse
Affiliation(s)
- Ian Winsten Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | | |
Collapse
|
17
|
Budding Yeast BFA1 Has Multiple Positive Roles in Directing Late Mitotic Events. G3-GENES GENOMES GENETICS 2018; 8:3397-3410. [PMID: 30166350 PMCID: PMC6222586 DOI: 10.1534/g3.118.200672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In Saccharomyces cerevisiae, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2 The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1 We conclude that Bfa1 functions to both inhibit and activate late mitotic events.
Collapse
|
18
|
Stauffer W, Sheng H, Lim HN. EzColocalization: An ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci Rep 2018; 8:15764. [PMID: 30361629 PMCID: PMC6202351 DOI: 10.1038/s41598-018-33592-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Insight into the function and regulation of biological molecules can often be obtained by determining which cell structures and other molecules they localize with (i.e. colocalization). Here we describe an open source plugin for ImageJ called EzColocalization to visualize and measure colocalization in microscopy images. EzColocalization is designed to be easy to use and customize for researchers with minimal experience in quantitative microscopy and computer programming. Features of EzColocalization include: (i) tools to select individual cells and organisms from images; (ii) filters to select specific types of cells and organisms based on physical parameters and signal intensity; (iii) heat maps and scatterplots to visualize the localization patterns of reporters; (iv) multiple metrics to measure colocalization for two or three reporters; (v) metric matrices to systematically measure colocalization at multiple combinations of signal intensity thresholds; and (vi) data tables that provide detailed information on each cell in a sample. These features make EzColocalization well-suited for experiments with low reporter signal, complex patterns of localization, and heterogeneous populations of cells and organisms.
Collapse
Affiliation(s)
- Weston Stauffer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Huanjie Sheng
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Han N Lim
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Atomwise Inc., San Francisco, CA, USA.
| |
Collapse
|
19
|
Tamborrini D, Juanes MA, Ibanes S, Rancati G, Piatti S. Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction. Nat Commun 2018; 9:4308. [PMID: 30333493 PMCID: PMC6193047 DOI: 10.1038/s41467-018-06767-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/10/2018] [Indexed: 01/11/2023] Open
Abstract
In many eukaryotic organisms cytokinesis is driven by a contractile actomyosin ring (CAR) that guides membrane invagination. What triggers CAR constriction at a precise time of the cell cycle is a fundamental question. In budding yeast CAR is assembled via a septin scaffold at the division site. A Hippo-like kinase cascade, the Mitotic Exit Network (MEN), promotes mitotic exit and cytokinesis, but whether and how these two processes are independently controlled by MEN is poorly understood. Here we show that a critical function of MEN is to promote displacement of the septin ring from the division site, which in turn is essential for CAR constriction. This is independent of MEN control over mitotic exit and involves recruitment of MEN components to the spindle pole body (SPB). Ubiquitination of the SPB scaffold Nud1 inhibits MEN signaling at the end of mitosis and prevents septin ring splitting, thus silencing the cytokinetic machinery. The Mitotic Exit Network (MEN) promotes mitotic exit and cytokinesis but if and how MEN independently controls these two processes is unclear. Here, the authors report that MEN displaces septins from the cell division site to promote actomyosin ring constriction, independently of MEN control of mitotic exit.
Collapse
Affiliation(s)
- Davide Tamborrini
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn Str. 11, 44227, Dortmund, Germany
| | - Maria Angeles Juanes
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France.,Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Sandy Ibanes
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France
| | - Giulia Rancati
- Institute of Medical Biology, 8a Biomedical Grove, Singapore, 138648, Singapore
| | - Simonetta Piatti
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
20
|
In Vitro Analysis of Tem1 GTPase Activity and Regulation by the Bfa1/Bub2 GAP. Methods Mol Biol 2018; 1505:71-80. [PMID: 27826857 DOI: 10.1007/978-1-4939-6502-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tem1 is a small GTPase that controls the mitotic progression of Saccharomyces cerevisiae through the Mitotic Exit Network. Tem1 activity is tightly controlled in mitosis by Bub2 and Bfa1 and is also regulated by the spindle orientation checkpoint that monitors the correct alignment of the mitotic spindle with the mother-daughter axis. In this chapter we describe the purification of Tem1, Bfa1, and Bub2 and a detailed radioactive filter-binding assay to study the nucleotide binding properties of Tem1 and the role of its regulators Bfa1 and Bub2.
Collapse
|
21
|
Scarfone I, Piatti S. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1. Small GTPases 2018; 6:196-201. [PMID: 26507466 PMCID: PMC4905282 DOI: 10.1080/21541248.2015.1109023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning.
Collapse
Affiliation(s)
- Ilaria Scarfone
- a Centre de Recherche en Biochimie Macromoleculaire-CNRS ; Montpellier , France.,b Present address: LPCV, iRTSV, CEA Grenoble, 17 Rue des martyrs, 38054 Grenoble, France
| | - Simonetta Piatti
- a Centre de Recherche en Biochimie Macromoleculaire-CNRS ; Montpellier , France
| |
Collapse
|
22
|
Lengefeld J, Yen E, Chen X, Leary A, Vogel J, Barral Y. Spatial cues and not spindle pole maturation drive the asymmetry of astral microtubules between new and preexisting spindle poles. Mol Biol Cell 2017; 29:10-28. [PMID: 29142076 PMCID: PMC5746063 DOI: 10.1091/mbc.e16-10-0725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
The distinct behavior of the spindle pole bodies (SPBs) during spindle orientation in yeast metaphase does not result from them being differently mature, but astral microtubule organization correlates with the subcellular position rather than the age of the SPBs. In many asymmetrically dividing cells, the microtubule-organizing centers (MTOCs; mammalian centrosome and yeast spindle pole body [SPB]) nucleate more astral microtubules on one of the two spindle poles than the other. This differential activity generally correlates with the age of MTOCs and contributes to orienting the mitotic spindle within the cell. The asymmetry might result from the two MTOCs being in distinctive maturation states. We investigated this model in budding yeast. Using fluorophores with different maturation kinetics to label the outer plaque components of the SPB, we found that the Cnm67 protein is mobile, whereas Spc72 is not. However, these two proteins were rapidly as abundant on both SPBs, indicating that SPBs mature more rapidly than anticipated. Superresolution microscopy confirmed this finding for Spc72 and for the γ-tubulin complex. Moreover, astral microtubule number and length correlated with the subcellular localization of SPBs rather than their age. Kar9-dependent orientation of the spindle drove the differential activity of the SPBs in astral microtubule organization rather than intrinsic differences between the spindle poles. Together, our data establish that Kar9 and spatial cues, rather than the kinetics of SPB maturation, control the asymmetry of astral microtubule organization between the preexisting and new SPBs.
Collapse
Affiliation(s)
- Jette Lengefeld
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Eric Yen
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Xiuzhen Chen
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Allen Leary
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Jackie Vogel
- Department of Biology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
23
|
de Los Santos-Velázquez AI, de Oya IG, Manzano-López J, Monje-Casas F. Late rDNA Condensation Ensures Timely Cdc14 Release and Coordination of Mitotic Exit Signaling with Nucleolar Segregation. Curr Biol 2017; 27:3248-3263.e5. [PMID: 29056450 DOI: 10.1016/j.cub.2017.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022]
Abstract
The nucleolus plays a pivotal role in multiple key cellular processes. An illustrative example is the regulation of mitotic exit in Saccharomyces cerevisiae through the nucleolar sequestration of the Cdc14 phosphatase. The peculiar structure of the nucleolus, however, has also its drawbacks. The repetitive nature of the rDNA gives rise to cohesion-independent linkages whose resolution in budding yeast requires the Cdc14-dependent inhibition of rRNA transcription, which facilitates condensin accessibility to this locus. Thus, the rDNA condenses and segregates later than most other yeast genomic regions. Here, we show that defective function of a small nucleolar ribonucleoprotein particle (snoRNP) assembly factor facilitates condensin accessibility to the rDNA and induces nucleolar hyper-condensation. Interestingly, this increased compaction of the nucleolus interferes with the proper release of Cdc14 from this organelle. This observation provides an explanation for the delayed rDNA condensation in budding yeast, which is necessary to efficiently coordinate timely Cdc14 release and mitotic exit with nucleolar compaction and segregation.
Collapse
Affiliation(s)
- Ana Isabel de Los Santos-Velázquez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Inés G de Oya
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC), University of Seville, and University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Sevilla, Spain.
| |
Collapse
|
24
|
Geymonat M, Segal M. Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results Probl Cell Differ 2017; 61:49-82. [PMID: 28409300 DOI: 10.1007/978-3-319-53150-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother-bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles-one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
25
|
The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of Saccharomyces cerevisiae. Genetics 2017; 206:919-937. [PMID: 28450458 DOI: 10.1534/genetics.116.194522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 01/11/2023] Open
Abstract
Age-based inheritance of centrosomes in eukaryotic cells is associated with faithful chromosome distribution in asymmetric cell divisions. During Saccharomyces cerevisiae ascospore formation, such an inheritance mechanism targets the yeast centrosome equivalents, the spindle pole bodies (SPBs) at meiosis II onset. Decreased nutrient availability causes initiation of spore formation at only the younger SPBs and their associated genomes. This mechanism ensures encapsulation of nonsister genomes, which preserves genetic diversity and provides a fitness advantage at the population level. Here, by usage of an enhanced system for sporulation-induced protein depletion, we demonstrate that the core mitotic exit network (MEN) is involved in age-based SPB selection. Moreover, efficient genome inheritance requires Dbf2/20-Mob1 during a late step in spore maturation. We provide evidence that the meiotic functions of the MEN are more complex than previously thought. In contrast to mitosis, completion of the meiotic divisions does not strictly rely on the MEN whereas its activity is required at different time points during spore development. This is reminiscent of vegetative MEN functions in spindle polarity establishment, mitotic exit, and cytokinesis. In summary, our investigation contributes to the understanding of age-based SPB inheritance during sporulation of S. cerevisiae and provides general insights on network plasticity in the context of a specialized developmental program. Moreover, the improved system for a developmental-specific tool to induce protein depletion will be useful in other biological contexts.
Collapse
|
26
|
Caydasi AK, Pereira G. Evaluation of the Dynamicity of Mitotic Exit Network and Spindle Position Checkpoint Components on Spindle Pole Bodies by Fluorescence Recovery After Photobleaching (FRAP). Methods Mol Biol 2017; 1505:167-182. [PMID: 27826864 DOI: 10.1007/978-1-4939-6502-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study in vivo binding and diffusion dynamics of fluorescently labeled proteins. In this chapter, we describe how to determine spindle pole body (SPB) binding dynamics of mitotic exit network (MEN) and spindle position checkpoint (SPOC) proteins using FRAP microscopy. Procedures presented here include the growth of the yeast cultures, sample preparation, image acquisition and analysis.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- DKFZ-ZMBH Alliance, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze/Kocaeli, 41400, Turkey
| | - Gislene Pereira
- DKFZ-ZMBH Alliance, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany.
| |
Collapse
|
27
|
Asymmetric Localization of Components and Regulators of the Mitotic Exit Network at Spindle Pole Bodies. Methods Mol Biol 2017; 1505:183-193. [PMID: 27826865 DOI: 10.1007/978-1-4939-6502-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most proteins of the Mitotic Exit Network (MEN) and their upstream regulators localize at spindle pole bodies (SPBs) at least in some stages of the cell cycle. Studying the SPB localization of MEN factors has been extremely useful to elucidate their biological roles, organize them in a hierarchical pathway, and define their dynamics under different conditions.Recruitment to SPBs of the small GTPase Tem1 and the downstream kinases Cdc15 and Mob1/Dbf2 is thought to be essential for Cdc14 activation and mitotic exit, while that of the upstream Tem1 regulators (the Kin4 kinase and the GTPase activating protein Bub2-Bfa1) is important for MEN inhibition upon spindle mispositioning. Here, we describe the detailed fluorescence microscopy procedures that we use in our lab to analyze the localization at SPBs of Mitotic Exit Network (MEN) components tagged with GFP or HA epitopes.
Collapse
|
28
|
Abstract
The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.
Collapse
Affiliation(s)
- Bàrbara Baro
- Department of Pediatrics, Division of Infectious Diseases,Stanford University School of Medicine, Stanford, CA, USA.
| | - Ethel Queralt
- Cancer Epigenetics & Biology Program, Hospitalet de Llobregat, Barcelona, Spain.
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, s/n. P.C.T. Cartuja 93., 41092, Sevilla, Spain.
| |
Collapse
|
29
|
Abstract
In budding yeast, alignment of the anaphase spindle along the mother-bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell-restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway's GTPase activity.
Collapse
Affiliation(s)
- Jill E Falk
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelsey Joyce
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Jenna Whalen
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
30
|
Falk JE, Campbell IW, Joyce K, Whalen J, Seshan A, Amon A. LTE1 promotes exit from mitosis by multiple mechanisms. Mol Biol Cell 2016; 27:3991-4001. [PMID: 27798238 PMCID: PMC5156540 DOI: 10.1091/mbc.e16-08-0563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
In budding yeast, the spindle position checkpoint ensures that cells exit from mitosis only when their spindle is properly aligned along the mother–bud axis. Exit from mitosis is controlled by both negative signals in the mother cell compartment and positive signals in the bud. In budding yeast, alignment of the anaphase spindle along the mother–bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell–restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway’s GTPase activity.
Collapse
Affiliation(s)
- Jill E Falk
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ian W Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kelsey Joyce
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Jenna Whalen
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Anupama Seshan
- Department of Biology, Emmanuel College, Boston, MA 02115
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
31
|
Falk JE, Tsuchiya D, Verdaasdonk J, Lacefield S, Bloom K, Amon A. Spatial signals link exit from mitosis to spindle position. eLife 2016; 5. [PMID: 27166637 PMCID: PMC4887205 DOI: 10.7554/elife.14036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI:http://dx.doi.org/10.7554/eLife.14036.001 Most cells duplicate their genetic material and then separate the two copies before they divide. This is true for budding yeast cells, which divide in an unusual manner. New daughter cells grow as a bud on the side of a larger mother cell and are eventually pinched off. To make healthy daughter cells, yeast must share their chromosomes between the mother cell and the bud. This involves threading the chromosomes through a small opening called the bud neck, which connects the mother cell and the bud. A surveillance mechanism in budding yeast monitors the placement of the molecular machine (called the spindle) that separates the chromosomes before a cell divides. This mechanism stops the cell from dividing if the spindle is not positioned correctly. Two models could explain how an incorrectly positioned spindle prevents budding yeast from dividing. The first model proposes that yeast cells do not divide if protein filaments (called microtubules) touch the bud neck. This only occurs if the spindle is not properly threaded into the bud through the small opening of the bud neck. The second model proposes that specific proteins required for cell division (which are found at the ends of the spindle) are inhibited while they are inside the mother cell. This means that the cell cannot divide until one end of its spindle moves out of the mother cell and into the bud. Now, Falk et al. report the results of experiments that aimed to distinguish between these two models. First, a laser was used to cut the spindle filaments in live yeast cells. This stopped the filaments from touching the neck between the mother cell and the bud, but did not cause the cell to divide. Therefore, these results refute the first model. Next, Falk et al. generated yeast cells that had essentially been tricked into forming two separate spindles before they started to divide. As would be predicted by the second model, these cells could divide as long as an end from at least one of the spindles entered the bud. These findings strongly suggest that the second model provides the best explanation for how yeast cells sense spindle position to control cell division. The findings also lend further support to previous work that showed that activators of cell division are found in the bud, while inhibitors of cell division are found in the mother cell. Finally, in a related study, Gryaznova, Caydasi et al. identify a protein at the ends of the spindle that acts like a regulatory hub to coordinate cell division with spindle position. Their findings also suggest that the surveillance mechanism is switched off in the bud to allow the cell to divide. DOI:http://dx.doi.org/10.7554/eLife.14036.002
Collapse
Affiliation(s)
- Jill Elaine Falk
- David H Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Dai Tsuchiya
- Department of Biology, Indiana University, Bloomington, United States
| | - Jolien Verdaasdonk
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, United States
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Angelika Amon
- David H Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
32
|
Gryaznova Y, Caydasi AK, Malengo G, Sourjik V, Pereira G. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes. eLife 2016; 5:e14029. [PMID: 27159239 PMCID: PMC4878874 DOI: 10.7554/elife.14029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/08/2016] [Indexed: 12/19/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control.
Collapse
Affiliation(s)
- Yuliya Gryaznova
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
| | - Ayse Koca Caydasi
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Malengo
- DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg, Germany
| | - Victor Sourjik
- DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg, Germany
| | - Gislene Pereira
- DKFZ-ZMBH Alliance, German Cancer Research Centre, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1. Cell Rep 2016; 15:2050-62. [DOI: 10.1016/j.celrep.2016.04.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022] Open
|
34
|
Muñoz-Barrera M, Aguilar I, Monje-Casas F. Dispensability of the SAC Depends on the Time Window Required by Aurora B to Ensure Chromosome Biorientation. PLoS One 2015; 10:e0144972. [PMID: 26661752 PMCID: PMC4682840 DOI: 10.1371/journal.pone.0144972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022] Open
Abstract
Aurora B and the spindle assembly checkpoint (SAC) collaborate to ensure the proper biorientation of chromosomes during mitosis. However, lack of Aurora B activity and inactivation of the SAC have a very different impact on chromosome segregation. This is most evident in Saccharomyces cerevisiae, since in this organism the lack of Aurora B is lethal and leads to severe aneuploidy problems, while the SAC is dispensable under normal growth conditions and mutants in this checkpoint do not show evident chromosome segregation defects. We demonstrate that the efficient repair of incorrect chromosome attachments by Aurora B during the initial stages of spindle assembly in budding yeast determines the lack of chromosome segregation defects in SAC mutants, and propose that the differential time window that Aurora B kinase requires to establish chromosome biorientation is the key factor that determines why some cells are more dependent on a functional SAC than others.
Collapse
Affiliation(s)
- Marta Muñoz-Barrera
- CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Isabel Aguilar
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Fernando Monje-Casas
- CABIMER, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
35
|
Scarfone I, Venturetti M, Hotz M, Lengefeld J, Barral Y, Piatti S. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet 2015; 11:e1004938. [PMID: 25658911 PMCID: PMC4450052 DOI: 10.1371/journal.pgen.1004938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.
Collapse
Affiliation(s)
- Ilaria Scarfone
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Manuel Hotz
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- Dipartimento di Biotecnologie e Bioscienze Università degli Studi di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
36
|
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 2014; 42:12469-82. [PMID: 25300489 PMCID: PMC4227775 DOI: 10.1093/nar/gku927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - María J Cabello-Lobato
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
37
|
Increased Aurora B activity causes continuous disruption of kinetochore-microtubule attachments and spindle instability. Proc Natl Acad Sci U S A 2014; 111:E3996-4005. [PMID: 25201961 DOI: 10.1073/pnas.1408017111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aurora B kinase regulates the proper biorientation of sister chromatids during mitosis. Lack of Aurora B kinase function results in the inability to correct erroneous kinetochore-microtubule attachments and gives rise to aneuploidy. Interestingly, increased Aurora B activity also leads to problems with chromosome segregation, and overexpression of this kinase has been observed in various types of cancer. However, little is known about the mechanisms by which an increase in Aurora B kinase activity can impair mitotic progression and cell viability. Here, using a yeast model, we demonstrate that increased Aurora B activity as a result of the overexpression of the Aurora B and inner centromere protein homologs triggers defects in chromosome segregation by promoting the continuous disruption of chromosome-microtubule attachments even when sister chromatids are correctly bioriented. This disruption leads to a constitutive activation of the spindle-assembly checkpoint, which therefore causes a lack of cytokinesis even though spindle elongation and chromosome segregation take place. Finally, we demonstrate that this increase in Aurora B activity causes premature collapse of the mitotic spindle by promoting instability of the spindle midzone.
Collapse
|
38
|
Caydasi AK, Micoogullari Y, Kurtulmus B, Palani S, Pereira G. The 14-3-3 protein Bmh1 functions in the spindle position checkpoint by breaking Bfa1 asymmetry at yeast centrosomes. Mol Biol Cell 2014; 25:2143-51. [PMID: 24850890 PMCID: PMC4091827 DOI: 10.1091/mbc.e14-04-0890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1–centrosome association and promotes symmetric Bfa1 localization to engage the spindle position checkpoint. In addition to their well-known role in microtubule organization, centrosomes function as signaling platforms and regulate cell cycle events. An important example of such a function is the spindle position checkpoint (SPOC) of budding yeast. SPOC is a surveillance mechanism that ensures alignment of the mitotic spindle along the cell polarity axis. Upon spindle misalignment, phosphorylation of the SPOC component Bfa1 by Kin4 kinase engages the SPOC by changing the centrosome localization of Bfa1 from asymmetric (one centrosome) to symmetric (both centrosomes). Here we show that, unexpectedly, Kin4 alone is unable to break Bfa1 asymmetry at yeast centrosomes. Instead, phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1–centrosome association and promotes symmetric Bfa1 localization. Consistently, BMH1-null cells are SPOC deficient. Our work thus identifies Bmh1 as a new SPOC component and refines the molecular mechanism that breaks Bfa1 centrosome asymmetry upon SPOC activation.
Collapse
Affiliation(s)
- Ayse Koca Caydasi
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Yagmur Micoogullari
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Bahtiyar Kurtulmus
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Saravanan Palani
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Gislene Pereira
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| |
Collapse
|
39
|
Baro B, Rodriguez-Rodriguez JA, Calabria I, Hernáez ML, Gil C, Queralt E. Dual Regulation of the mitotic exit network (MEN) by PP2A-Cdc55 phosphatase. PLoS Genet 2013; 9:e1003966. [PMID: 24339788 PMCID: PMC3854864 DOI: 10.1371/journal.pgen.1003966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022] Open
Abstract
Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit. Cell cycle studies over the years have tried to elucidate the molecular mechanisms behind cell division, one of the most highly regulated of all cell processes, which ensures life in all organisms. Protein phosphorylation emerged as a key regulatory mechanism in the cell cycle. The highly conserved family of cyclin-dependent kinases, the Cdks, are considered the main component of the cell cycle control system. However, it has become clear that opposing phosphatases also play a key role in determining the phosphorylation state of the proteins. Cells enter mitosis when mitotic Cdk activity increases, having its pick of activity during metaphase. To exit mitosis, cells must coordinate chromosome segregation with Cdk inactivation processes involving the activation of protein phosphatases. Here we show that the phosphatase PP2A regulates the mitotic exit network (MEN) by counteracting the phosphorylation of Bfa1 and Mob1. Our findings provide new insights into the mechanism by which PP2A-Cdc55 functions affect the regulation of various MEN components that contribute to mitotic exit. The core signalling elements of the MEN, SIN and Hippo pathways are highly conserved. Therefore, studies of MEN regulation will contribute to our understanding of MEN-related pathways in other organisms.
Collapse
Affiliation(s)
- Barbara Baro
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose-Antonio Rodriguez-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María Luisa Hernáez
- Unidad de Proteómica, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
40
|
The Mitotic Exit Network: new turns on old pathways. Trends Cell Biol 2013; 24:145-52. [PMID: 24594661 DOI: 10.1016/j.tcb.2013.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/04/2023]
Abstract
In budding yeast, the Mitotic Exit Network (MEN) is a signaling pathway known to drive cells out of mitosis and promote the faithful division of cells. The MEN triggers inactivation of cyclin-dependent kinase (Cdk1), the master regulator of mitosis, and the onset of cytokinesis after segregation of the daughter nuclei. The current model of the MEN suggests that MEN activity is restricted to late anaphase and coordinated with proper alignment of the spindle pole bodies (SPBs) with the division axis. However, recent evidence suggests that MEN activity may function earlier in mitosis, prompting re-evaluation of the current model. Here we attempt to integrate this recent progress into the current view of mitotic exit.
Collapse
|
41
|
Valerio-Santiago M, de los Santos-Velázquez AI, Monje-Casas F. Inhibition of the mitotic exit network in response to damaged telomeres. PLoS Genet 2013; 9:e1003859. [PMID: 24130507 PMCID: PMC3794921 DOI: 10.1371/journal.pgen.1003859] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.
Collapse
Affiliation(s)
- Mauricio Valerio-Santiago
- Centro Andaluz de Biología Molecular y Medicina Regenerativa/Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa/Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
42
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
43
|
Rock JM, Lim D, Stach L, Ogrodowicz RW, Keck JM, Jones MH, Wong CCL, Yates JR, Winey M, Smerdon SJ, Yaffe MB, Amon A. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 2013; 340:871-5. [PMID: 23579499 DOI: 10.1126/science.1235822] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.
Collapse
Affiliation(s)
- Jeremy M Rock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
45
|
SPOC alert—When chromosomes get the wrong direction. Exp Cell Res 2012; 318:1421-7. [DOI: 10.1016/j.yexcr.2012.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/16/2022]
|
46
|
Abstract
The mitotic exit network (MEN), a pathway essential for vegetative growth, is largely dispensable for the specialized meiotic divisions, contributing only to timely exit from meiosis II. MEN activity is restricted to meiosis II by multiple regulatory mechanisms distinct from those operative in mitosis. The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.
Collapse
Affiliation(s)
- Michelle A Attner
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
47
|
A dynamical model of the spindle position checkpoint. Mol Syst Biol 2012; 8:582. [PMID: 22580890 PMCID: PMC3377990 DOI: 10.1038/msb.2012.15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/30/2012] [Indexed: 11/24/2022] Open
Abstract
The spindle position checkpoint (SPOC) is an important surveillance mechanism in the budding yeast cell cycle. An integrated approach, combining quantitative experimental cell biology with mathematical modeling, reveals how the SPOC inhibits mitotic exit at the molecular level. ![]()
We used fluorescence microscopy to quantify the number of molecules of Bfa1, Bub2 and Tem1 at the spindle pole bodies, and the size of the GAP-dependent and -independent Tem1 pools that coexist during mitosis. We constructed a dynamical model of Tem1 regulation by Bfa1–Bub2. Based on in-silico evidence supported by in-vivo data, we propose that cytoplasmic regulation of Tem1 by the GAP complex is critical for robust spindle position checkpoint arrest. Our model also indicates the necessity of additional mechanisms of GAP inhibition for checkpoint silencing after spindle realignment.
The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1–Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1–Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1–Bub2 and Tem1 localization at the SPBs. Based on the measured SPB-bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.
Collapse
|
48
|
García-Rodríguez N, Díaz de la Loza MDC, Andreson B, Monje-Casas F, Rothstein R, Wellinger RE. Impaired manganese metabolism causes mitotic misregulation. J Biol Chem 2012; 287:18717-29. [PMID: 22493290 DOI: 10.1074/jbc.m112.358309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Manganese is an essential trace element, whose intracellular levels need to be carefully regulated. Mn(2+) acts as a cofactor for many enzymes and excess of Mn(2+) is toxic. Alterations in Mn(2+) homeostasis affect metabolic functions and mutations in the human Mn(2+)/Ca(2+) transporter ATP2C1 have been linked to Hailey-Hailey disease. By deletion of the yeast orthologue PMR1 we have studied the impact of Mn(2+) on cell cycle progression and show that an excess of cytosolic Mn(2+) alters S-phase transit, induces transcriptional up-regulation of cell cycle regulators, bypasses the need for S-phase cell cycle checkpoints and predisposes to genomic instability. On the other hand, we find that depletion of the Golgi Mn(2+) pool requires a functional morphology checkpoint to avoid the formation of polyploid cells.
Collapse
Affiliation(s)
- Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Calabria I, Baro B, Rodriguez-Rodriguez JA, Russiñol N, Queralt E. Zds1 regulates PP2A(Cdc55) activity and Cdc14 activation during mitotic exit through its Zds_C motif. J Cell Sci 2012; 125:2875-84. [PMID: 22427694 PMCID: PMC3434804 DOI: 10.1242/jcs.097865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At anaphase onset, highly active mitotic cyclin-dependent kinase (Cdk) is inactivated to promote exit from mitosis and completion of cytokinesis. The budding yeast Cdc14p phosphatase is a key mitotic regulator that counteracts cyclin-dependent kinase (Cdk) activity during mitotic exit. Separase, together with Zds1p, promotes the downregulation of the protein phosphatase 2A in conjunction with its Cdc55p regulatory subunit (PP2A(Cdc55)) in early anaphase, enabling accumulation of phosphorylated forms of Net1p and release of Cdc14p from the nucleolus. Here we show that the C-terminal domain of Zds1p, called the Zds_C motif, is required for Zds1-induced release of Cdc14p, and the N-terminal domain of the protein might be involved in regulating this activity. More interestingly, Zds1p physically interacts with Cdc55p, and regulates its localization through the Zds_C motif. Nevertheless, expression of the Zds_C motif at endogenous levels cannot induce timely release of Cdc14p from the nucleolus, despite the proper (nucleolar) localization of Cdc55p. Our results suggest that the activity of PP2A(Cdc55) cannot be modulated solely through regulation of its localization, and that an additional regulatory step is probably required. These results suggest that Zds1p recruits PP2A(Cdc55) to the nucleolus and induces its inactivation by an unknown mechanism.
Collapse
Affiliation(s)
- Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Merlini L, Piatti S. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol Chem 2012; 392:805-12. [PMID: 21824008 DOI: 10.1515/bc.2011.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.
Collapse
Affiliation(s)
- Laura Merlini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|