1
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
2
|
Crawford MW, Posch G, Cattin-Ortolá J, Topalidou I, Ailion M. Mutations in the NXF-1:NXT-1 mRNA export complex affect gene-expression driven by the hsp-16.41 promoter. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000918. [PMID: 37583452 PMCID: PMC10423990 DOI: 10.17912/micropub.biology.000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
The NXF-1 : NXT-1 heterodimer is essential for the nuclear export of mRNA. Here we describe three new alleles of nxf-1 and one allele of nxt-1 isolated from a forward genetic screen. These mutations cause no apparent phenotype under normal growth conditions, but partially suppress the lethality caused by heat-shock induced expression of the PEEL-1 toxin from P hsp-16.41 :: peel-1 . There is also decreased expression of P hsp-16.41 ::eGFP in an nxf-1 mutant. We propose that NXF-1 : NXT-1 influences the expression of heat-shock activated genes due to a role in the recruitment of the hsp-16.41 promoter to the nuclear pore complex during heat-shock.
Collapse
Affiliation(s)
| | - Galen Posch
- Department of Biochemistry, University of Washington, Seattle, WA USA
| | | | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA USA
| |
Collapse
|
3
|
González L, Kolbin D, Trahan C, Jeronimo C, Robert F, Oeffinger M, Bloom K, Michnick SW. Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation. Nat Commun 2023; 14:1135. [PMID: 36854718 PMCID: PMC9975218 DOI: 10.1038/s41467-023-36391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Partitioning of active gene loci to the nuclear envelope (NE) is a mechanism by which organisms increase the speed of adaptation and metabolic robustness to fluctuating resources in the environment. In the yeast Saccharomyces cerevisiae, adaptation to nutrient depletion or other stresses, manifests as relocalization of active gene loci from nucleoplasm to the NE, resulting in more efficient transport and translation of mRNA. The mechanism by which this partitioning occurs remains a mystery. Here, we demonstrate that the yeast inositol depletion-responsive gene locus INO1 partitions to the nuclear envelope, driven by local histone acetylation-induced polymer-polymer phase separation from the nucleoplasmic phase. This demixing is consistent with recent evidence for chromatin phase separation by acetylation-mediated dissolution of multivalent histone association and fits a physical model where increased bending stiffness of acetylated chromatin polymer causes its phase separation from de-acetylated chromatin. Increased chromatin spring stiffness could explain nucleation of transcriptional machinery at active gene loci.
Collapse
Affiliation(s)
- Lidice González
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian Trahan
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Marlene Oeffinger
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
4
|
Sawh AN, Mango SE. Chromosome organization in 4D: insights from C. elegans development. Curr Opin Genet Dev 2022; 75:101939. [PMID: 35759905 DOI: 10.1016/j.gde.2022.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization.
Collapse
Affiliation(s)
- Ahilya N Sawh
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| | - Susan E Mango
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| |
Collapse
|
5
|
Zheleva A, Camino LP, Fernández-Fernández N, García-Rubio M, Askjaer P, García-Muse T, Aguilera A. THSC/TREX-2 deficiency causes replication stress and genome instability in Caenorhabditis elegans. J Cell Sci 2021; 134:jcs258435. [PMID: 34553761 PMCID: PMC10658913 DOI: 10.1242/jcs.258435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022] Open
Abstract
Transcription is an essential process of DNA metabolism, yet it makes DNA more susceptible to DNA damage. THSC/TREX-2 is a conserved eukaryotic protein complex with a key role in mRNP biogenesis and maturation that prevents genome instability. One source of such instability is linked to transcription, as shown in yeast and human cells, but the underlying mechanism and whether this link is universal is still unclear. To obtain further insight into the putative role of the THSC/TREX-2 complex in genome integrity, we have used Caenorhabditis elegans mutants of the thp-1 and dss-1 components of THSC/TREX-2. These mutants show similar defective meiosis, DNA damage accumulation and activation of the DNA damage checkpoint. However, they differ from each other regarding replication defects, as determined by measuring dUTP incorporation in the germline. Interestingly, this specific thp-1 mutant phenotype can be partially rescued by overexpression of RNase H. Furthermore, both mutants show a mild increase in phosphorylation of histone H3 at Ser10 (H3S10P), a mark previously shown to be linked to DNA-RNA hybrid-mediated genome instability. These data support the view that both THSC/TREX-2 factors prevent transcription-associated DNA damage derived from DNA-RNA hybrid accumulation by separate means.
Collapse
Affiliation(s)
- Angelina Zheleva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Lola P. Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Nuria Fernández-Fernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Peter Askjaer
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
6
|
Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2117-2133. [PMID: 33314263 PMCID: PMC8359368 DOI: 10.1111/pce.13975] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
8
|
Munafò M, Lawless VR, Passera A, MacMillan S, Bornelöv S, Haussmann IU, Soller M, Hannon GJ, Czech B. Channel nuclear pore complex subunits are required for transposon silencing in Drosophila. eLife 2021; 10:e66321. [PMID: 33856346 PMCID: PMC8133776 DOI: 10.7554/elife.66321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
The nuclear pore complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some Nups can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.
Collapse
Affiliation(s)
- Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Victoria R Lawless
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Alessandro Passera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Serena MacMillan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Irmgard U Haussmann
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City UniversityBirminghamUnited Kingdom
- School of Biosciences, College of Life and Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
- Birmingham Center for Genome Biology, University of BirminghamBirminghamUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
9
|
Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev 2021; 67:67-76. [PMID: 33291060 PMCID: PMC8084925 DOI: 10.1016/j.gde.2020.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
The nuclear pore complex and the genome: organizing and regulatory principles. Curr Opin Genet Dev 2021; 67:142-150. [PMID: 33556822 DOI: 10.1016/j.gde.2021.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/29/2022]
Abstract
The nuclear pore complex (NPC) is a massive nuclear envelope-embedded protein complex, the canonical function of which is to mediate selective nucleocytoplasmic transport. In addition to its transport function, the NPC has been shown to interact with the underlying chromatin and to influence both activating and repressive gene regulatory processes, contributing to the establishment and the epigenetic maintenance of cell identity. In this review, we discuss diverse gene regulatory functions of NPC components and emerging mechanisms underlying these functions, including roles in genome architecture, transcription complex assembly, chromatin remodeling, and coordination of transcription and mRNA export. These functional roles highlight the importance of the NPC as a nuclear scaffold directing genome organization and function.
Collapse
|
11
|
Forey R, Barthe A, Tittel-Elmer M, Wery M, Barrault MB, Ducrot C, Seeber A, Krietenstein N, Szachnowski U, Skrzypczak M, Ginalski K, Rowicka M, Cobb JA, Rando OJ, Soutourina J, Werner M, Dubrana K, Gasser SM, Morillon A, Pasero P, Lengronne A, Poli J. A Role for the Mre11-Rad50-Xrs2 Complex in Gene Expression and Chromosome Organization. Mol Cell 2020; 81:183-197.e6. [PMID: 33278361 DOI: 10.1016/j.molcel.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023]
Abstract
Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.
Collapse
Affiliation(s)
- Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Mireille Tittel-Elmer
- Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Maxime Wery
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Marie-Bénédicte Barrault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Cécile Ducrot
- Institute of Molecular and Cellular Radiobiology, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France
| | - Andrew Seeber
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA; University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Nils Krietenstein
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ugo Szachnowski
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Jennifer A Cobb
- Departments of Biochemistry and Molecular Biology and Oncology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Michel Werner
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Karine Dubrana
- Institute of Molecular and Cellular Radiobiology, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France
| | - Susan M Gasser
- University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS UMR 3244, ncRNA, Epigenetic and Genome Fluidity, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France.
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labéllisée Ligue contre le Cancer, 34396 Montpellier, France; University of Basel and Friedrich Miescher Institute for Biomedical Research, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
12
|
Gozalo A, Duke A, Lan Y, Pascual-Garcia P, Talamas JA, Nguyen SC, Shah PP, Jain R, Joyce EF, Capelson M. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Mol Cell 2019; 77:67-81.e7. [PMID: 31784359 DOI: 10.1016/j.molcel.2019.10.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/04/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.
Collapse
Affiliation(s)
- Alejandro Gozalo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Duke
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Talamas
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Zheleva A, Gómez-Orte E, Sáenz-Narciso B, Ezcurra B, Kassahun H, de Toro M, Miranda-Vizuete A, Schnabel R, Nilsen H, Cabello J. Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008338. [PMID: 31525188 PMCID: PMC6762213 DOI: 10.1371/journal.pgen.1008338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/26/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022] Open
Abstract
Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.
Collapse
Affiliation(s)
- Angelina Zheleva
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Eva Gómez-Orte
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | | | - Begoña Ezcurra
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Henok Kassahun
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - María de Toro
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Juan Cabello
- CIBIR (Center for Biomedical Research of La Rioja), Logroño, La Rioja, Spain
| |
Collapse
|
14
|
Chen S, Wang R, Zheng D, Zhang H, Chang X, Wang K, Li W, Fan J, Tian B, Cheng H. The mRNA Export Receptor NXF1 Coordinates Transcriptional Dynamics, Alternative Polyadenylation, and mRNA Export. Mol Cell 2019; 74:118-131.e7. [PMID: 30819645 DOI: 10.1016/j.molcel.2019.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.
Collapse
Affiliation(s)
- Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingya Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
de Bruyn Kops A, Burke JE, Guthrie C. Brr6 plays a role in gene recruitment and transcriptional regulation at the nuclear envelope. Mol Biol Cell 2018; 29:2578-2590. [PMID: 30133335 PMCID: PMC6254580 DOI: 10.1091/mbc.e18-04-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Correlation between transcriptional regulation and positioning of genes at the nuclear envelope is well established in eukaryotes, but the mechanisms involved are not well understood. We show that brr6-1, a mutant of the essential yeast envelope transmembrane protein Brr6p, impairs normal positioning and expression of the PAB1 and FUR4-GAL1,10,7 loci. Similarly, expression of a dominant negative nucleoplasmic Brr6 fragment in wild-type cells reproduced many of the brr6-1 effects. Histone chromatin immunoprecipitation (ChIP) experiments showed decreased acetylation at the key histone H4K16 residue in the FUR4-GAL1,10,7 region in brr6-1. Importantly, blocking deacetylation significantly suppressed selected brr6-1 phenotypes. ChIPseq with FLAG-tagged Brr6 fragments showed enrichment at FUR4 and several other genes that showed striking changes in brr6-1 RNAseq data. These associations depended on a Brr6 putative zinc finger domain. Importantly, artificially tethering the GAL1 locus to the envelope suppressed the brr6-1 effects on GAL1 and FUR4 expression and increased H4K16 acetylation between GAL1 and FUR4 in the mutant. Together these results argue that Brr6 interacts with chromatin, helping to maintain normal chromatin architecture and transcriptional regulation of certain loci at the nuclear envelope.
Collapse
Affiliation(s)
- Anne de Bruyn Kops
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Jordan E Burke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
16
|
Diament A, Tuller T. Modeling three-dimensional genomic organization in evolution and pathogenesis. Semin Cell Dev Biol 2018; 90:78-93. [PMID: 30030143 DOI: 10.1016/j.semcdb.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
The regulation of gene expression is mediated via the complex three-dimensional (3D) conformation of the genetic material and its interactions with various intracellular factors. Various experimental and computational approaches have been developed in recent years for understating the relation between the 3D conformation of the genome and the phenotypes of cells in normal condition and diseases. In this review, we will discuss novel approaches for analyzing and modeling the 3D genomic conformation, focusing on deciphering disease-causing mutations that affect gene expression. We conclude that as this is a very challenging mission, an important direction should involve the comparative analysis of various 3D models from various organisms or cells.
Collapse
Affiliation(s)
- Alon Diament
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
17
|
Heat Shock Protein Genes Undergo Dynamic Alteration in Their Three-Dimensional Structure and Genome Organization in Response to Thermal Stress. Mol Cell Biol 2017; 37:MCB.00292-17. [PMID: 28970326 DOI: 10.1128/mcb.00292-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein (HSP) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5'-3' gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene "crumpling"). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci.
Collapse
|
18
|
Matsushita M, Ochiai H, Suzuki KIT, Hayashi S, Yamamoto T, Awazu A, Sakamoto N. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin. J Cell Sci 2017; 130:4097-4107. [PMID: 29084822 DOI: 10.1242/jcs.206862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development.
Collapse
Affiliation(s)
- Masaya Matsushita
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Ochiai
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.,JST, PRESTO, Higashi-Hiroshima 739-8530, Japan
| | - Ken-Ichi T Suzuki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Sayaka Hayashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan .,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
19
|
Ooi FK, Prahlad V. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci Signal 2017; 10:10/501/eaan4893. [PMID: 29042483 DOI: 10.1126/scisignal.aan4893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning, a process by which animals modify their behavior as a result of experience, enables organisms to synthesize information from their surroundings to acquire resources and avoid danger. We showed that a previous encounter with only the odor of pathogenic bacteria prepared Caenorhabditis elegans to survive exposure to the pathogen by increasing the heat shock factor 1 (HSF-1)-dependent expression of genes encoding molecular chaperones. Experience-mediated enhancement of chaperone gene expression required serotonin, which primed HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II-enriched nuclear loci, even before transcription occurred. However, HSF-1-dependent chaperone gene expression was stimulated only if and when animals encountered the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by preemptively and specifically initiating transcriptional mechanisms throughout the whole organism that prepare the animal to respond rapidly to proteotoxic agents. These studies provide one plausible basis for the protective role of environmental enrichment in disease.
Collapse
Affiliation(s)
- Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Ryabichko SS, Ibragimov AN, Lebedeva LA, Kozlov EN, Shidlovskii YV. Super-Resolution Microscopy in Studying the Structure and Function of the Cell Nucleus. Acta Naturae 2017; 9:42-51. [PMID: 29340216 PMCID: PMC5762827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 11/21/2022] Open
Abstract
In recent decades, novel microscopic methods commonly referred to as super- resolution microscopy have been developed. These methods enable the visualization of a cell with a resolution of up to 10 nm. The application of these methods is of great interest in studying the structure and function of the cell nucleus. The review describes the main achievements in this field.
Collapse
Affiliation(s)
- S. S. Ryabichko
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - A. N. Ibragimov
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - L. A. Lebedeva
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - E. N. Kozlov
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - Y. V. Shidlovskii
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, bldg. 2, Moscow, 119048 , Russia
| |
Collapse
|
21
|
Brickner J. Genetic and epigenetic control of the spatial organization of the genome. Mol Biol Cell 2017; 28:364-369. [PMID: 28137949 PMCID: PMC5341720 DOI: 10.1091/mbc.e16-03-0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic genomes are spatially organized within the nucleus by chromosome folding, interchromosomal contacts, and interaction with nuclear structures. This spatial organization is observed in diverse organisms and both reflects and contributes to gene expression and differentiation. This leads to the notion that the arrangement of the genome within the nucleus has been shaped and conserved through evolutionary processes and likely plays an adaptive function. Both DNA-binding proteins and changes in chromatin structure influence the positioning of genes and larger domains within the nucleus. This suggests that the spatial organization of the genome can be genetically encoded by binding sites for DNA-binding proteins and can also involve changes in chromatin structure, potentially through nongenetic mechanisms. Here I briefly discuss the results that support these ideas and their implications for how genomes encode spatial organization.
Collapse
Affiliation(s)
- Jason Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| |
Collapse
|
22
|
Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell 2017; 169:780-791. [PMID: 28525751 DOI: 10.1016/j.cell.2017.04.022] [Citation(s) in RCA: 710] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 01/06/2023]
Abstract
In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation.
Collapse
|
23
|
Pascual-Garcia P, Debo B, Aleman JR, Talamas JA, Lan Y, Nguyen NH, Won KJ, Capelson M. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts. Mol Cell 2017; 66:63-76.e6. [PMID: 28366641 DOI: 10.1016/j.molcel.2017.02.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 01/09/2023]
Abstract
Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Debo
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer R Aleman
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Talamas
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nha H Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung J Won
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Raices M, D'Angelo MA. Nuclear pore complexes and regulation of gene expression. Curr Opin Cell Biol 2017; 46:26-32. [PMID: 28088069 DOI: 10.1016/j.ceb.2016.12.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Nuclear pore complexes (NPCs), are large multiprotein channels that penetrate the nuclear envelope connecting the nucleus to the cytoplasm. Accumulating evidence shows that besides their main role in regulating the exchange of molecules between these two compartments, NPCs and their components also play important transport-independent roles, including gene expression regulation, chromatin organization, DNA repair, RNA processing and quality control, and cell cycle control. Here, we will describe the recent findings about the role of these structures in the regulation of gene expression.
Collapse
Affiliation(s)
- Marcela Raices
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 N. Torrey Pines Road, La Jolla, 92037 CA, United States
| | - Maximiliano A D'Angelo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 N. Torrey Pines Road, La Jolla, 92037 CA, United States.
| |
Collapse
|
25
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
26
|
Labade AS, Karmodiya K, Sengupta K. HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenetics Chromatin 2016; 9:54. [PMID: 27980680 PMCID: PMC5135769 DOI: 10.1186/s13072-016-0106-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background The nuclear pore complex (NPC) mediates nuclear transport of RNA and proteins into and out of the nucleus. Certain nucleoporins have additional functions in chromatin organization and transcription regulation. Nup93 is a scaffold nucleoporin at the nuclear pore complex which is associated with human chromosomes 5, 7 and 16 and with the promoters of the HOXA gene as revealed by ChIP-on-chip studies using tiling microarrays for these chromosomes. However, the functional consequences of the association of Nup93 with HOXA is unknown. Results Here, we examined the association of Nup93 with the HOXA gene cluster and its consequences on HOXA gene expression in diploid colorectal cancer cells (DLD1). Nup93 showed a specific enrichment ~1 Kb upstream of the transcription start site of each of the HOXA1, HOXA3 and HOXA5 promoters, respectively. Furthermore, the association of Nup93 with HOXA was assisted by its interacting partners Nup188 and Nup205. The depletion of the Nup93 sub-complex significantly upregulated HOXA gene expression levels. However, expression levels of a control gene locus (GLCCI1) on human chromosome 7 were unaffected. Three-dimensional fluorescence in situ hybridization (3D-FISH) analyses revealed that the depletion of the Nup93 sub-complex (but not Nup98) disengages the HOXA gene locus from the nuclear periphery, suggesting a potential role for Nup93 in tethering and repressing the HOXA gene cluster. Consistently, Nup93 knockdown increased active histone marks (H3K9ac), decreased repressive histone marks (H3K27me3) on the HOXA1 promoter and increased transcription elongation marks (H3K36me3) within the HOXA1 gene. Moreover, the combined depletion of Nup93 and CTCF (a known organizer of HOXA gene cluster) but not Nup93 alone, significantly increased GLCCI1 gene expression levels. Taken together, this suggests a novel role for Nup93 and its interactors in repressing the HOXA gene cluster. Conclusions This study reveals that the nucleoporin Nup93 assisted by its interactors Nup188 and Nup205 mediates the repression of HOXA gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0106-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajay S Labade
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| | - Krishanpal Karmodiya
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008 India
| |
Collapse
|
27
|
Wang X, Hao L, Saur T, Joyal K, Zhao Y, Zhai D, Li J, Pribadi M, Coppola G, Cohen BM, Buttner EA. Forward Genetic Screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As Suppressors of C9ORF72 Related Phenotypes. Front Mol Neurosci 2016; 9:113. [PMID: 27877110 PMCID: PMC5100550 DOI: 10.3389/fnmol.2016.00113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023] Open
Abstract
An abnormally expanded GGGGCC repeat in C9ORF72 is the most frequent causal mutation associated with amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration (FTLD). Both gain-of-function (gf) and loss-of-function (lf) mechanisms have been involved in C9ORF72 related ALS/FTLD. The gf mechanism of C9ORF72 has been studied in various animal models but not in C. elegans. In the present study, we described mutant C9ORF72 modeling in C. elegans and report the finding of two suppressor genes. We made transgenes containing 9 or 29 repeats of GGGGCC in C9ORF72, driven by either the hsp-16 promoters or the unc-119 promoter. Transgenic worms were made to carry such transgenes. Phenotypic analysis of those animals revealed that Phsp−16::(G4C2)29::GFP transgenic animals (EAB 135) displayed severe paralysis by the second day of adulthood, followed by lethality, which phenotypes were less severe in Phsp−16::(G4C2)9::GFP transgenic animals (EAB242), and absent in control strains expressing empty vectors. Suppressor genes of this locomotor phenotype were pursued by introducing mutations with ethyl methanesulfonate in EAB135, screening mutant strains that moved faster than EAB135 by a food-ring assay, identifying mutations by whole-genome sequencing and testing the underlying mechanism of the suppressor genes either by employing RNA interference studies or C. elegans genetics. Three mutant strains, EAB164, EAB165 and EAB167, were identified. Eight suppressor genes carrying nonsense/canonical splicing site mutations were confirmed, among which a nonsense mutation of F57A10.2/VAMP was found in all three mutant strains, and a nonsense mutation of acp-4/ACP2 was only found in EAB164. Knock down/out of those two genes in EAB135 animals by feeding RNAi/introducing a known acp-4 null allele phenocopied the suppression of the C9ORF72 variant related movement defect in the mutant strains. Translational conformation in a mammalian system is required, but our worm data suggest that altering acp-4/ACP2 encoding lysosomal acid phosphatase may provide a potential therapeutic method of reducing acp-4/ACP2 levels, as opposed or complementary to directly reducing C9ORF72, to relieve C9ORF72-ALS phenotypes. It also suggests that the C9ORF72-ALS/FTLD may share a pathophysiologic mechanism with vesicle-associated membrane protein-associated protein B, a homolog of F57A10.2/VAMP, which is a proven ALS8 gene.
Collapse
Affiliation(s)
- Xin Wang
- School of Public Health, Xinxiang Medical UniversityXinxiang, China; Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical SchoolBelmont, MA, USA
| | - Limin Hao
- Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical School Belmont, MA, USA
| | - Taixiang Saur
- Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical School Belmont, MA, USA
| | - Katelyn Joyal
- Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical School Belmont, MA, USA
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University Xinxiang, China
| | - Desheng Zhai
- Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical School Belmont, MA, USA
| | - Jie Li
- Tianjin Mental Health Center Tianjin, China
| | - Mochtar Pribadi
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Bruce M Cohen
- Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical School Belmont, MA, USA
| | - Edgar A Buttner
- Program for Neuropsychiatric Research, McLean Hospital and Harvard Medical School Belmont, MA, USA
| |
Collapse
|
28
|
Brickner DG, Sood V, Tutucci E, Coukos R, Viets K, Singer RH, Brickner JH. Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms. Mol Biol Cell 2016; 27:2980-93. [PMID: 27489341 PMCID: PMC5042583 DOI: 10.1091/mbc.e16-03-0174] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
“DNA zip codes” control positioning and interchromosomal clustering of GAL1-10 in yeast. However, these two phenomena have distinct molecular mechanisms, requiring different nuclear pore proteins, and are regulated differently by transcription and the cell cycle. On activation, the GAL genes in yeast are targeted to the nuclear periphery through interaction with the nuclear pore complex. Here we identify two cis-acting “DNA zip codes” from the GAL1-10 promoter that are necessary and sufficient to induce repositioning to the nuclear periphery. One of these zip codes, GRS4, is also necessary and sufficient to promote clustering of GAL1-10 alleles. GRS4, and to a lesser extent GRS5, contribute to stronger expression of GAL1 and GAL10 by increasing the fraction of cells that respond to the inducer. The molecular mechanism controlling targeting to the NPC is distinct from the molecular mechanism controlling interchromosomal clustering. Targeting to the nuclear periphery and interaction with the nuclear pore complex are prerequisites for gene clustering. However, once formed, clustering can be maintained in the nucleoplasm, requires distinct nuclear pore proteins, and is regulated differently through the cell cycle. In addition, whereas targeting of genes to the NPC is independent of transcription, interchromosomal clustering requires transcription. These results argue that zip code–dependent gene positioning at the nuclear periphery and interchromosomal clustering represent interdependent phenomena with distinct molecular mechanisms.
Collapse
Affiliation(s)
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Kayla Viets
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
29
|
Randise-Hinchliff C, Brickner JH. Transcription factors dynamically control the spatial organization of the yeast genome. Nucleus 2016; 7:369-74. [PMID: 27442220 PMCID: PMC5039007 DOI: 10.1080/19491034.2016.1212797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In yeast, inducible genes such as INO1, PRM1 and HIS4 reposition from the nucleoplasm to nuclear periphery upon activation. This leads to a physical interaction with nuclear pore complex (NPC), interchromosomal clustering, and stronger transcription. Repositioning to the nuclear periphery is controlled by cis-acting transcription factor (TF) binding sites located within the promoters of these genes and the TFs that bind to them. Such elements are both necessary and sufficient to control positioning of genes to the nuclear periphery. We have identified 4 TFs capable of controlling the regulated positioning of genes to the nuclear periphery in budding yeast under different conditions: Put3, Cbf1, Gcn4 and Ste12. In each case, we have defined the molecular basis of regulated relocalization to the nuclear periphery. Put3- and Cbf1-mediated targeting to nuclear periphery is regulated through local recruitment of Rpd3(L) histone deacetylase complex by transcriptional repressors. Rpd3(L), through its histone deacetylase activity, prevents TF-mediated gene positioning by blocking TF binding. Many yeast transcriptional repressors were capable of blocking Put3-mediated recruitment; 11 of these required Rpd3. Thus, it is a general function of transcription repressors to regulate TF-mediated recruitment. However, Ste12 and Gcn4-mediated recruitment is regulated independently of Rpd3(L) and transcriptional repressors. Ste12-mediated recruitment is regulated by phosphorylation of an inhibitor called Dig2, and Gcn4-mediated gene targeting is up-regulated by increasing Gcn4 protein levels. The ability to control spatial position of genes in yeast represents a novel function for TFs and different regulatory strategies provide dynamic control of the yeast genome through different time scales.
Collapse
Affiliation(s)
| | - Jason H Brickner
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| |
Collapse
|
30
|
Ben-Yishay R, Ashkenazy AJ, Shav-Tal Y. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore. Trends Genet 2016; 32:419-431. [DOI: 10.1016/j.tig.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023]
|
31
|
Gonzalez-Sandoval A, Gasser SM. On TADs and LADs: Spatial Control Over Gene Expression. Trends Genet 2016; 32:485-495. [PMID: 27312344 DOI: 10.1016/j.tig.2016.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
Abstract
The combinatorial action of transcription factors drives cell-type-specific gene expression patterns. However, transcription factor binding and gene regulation occur in the context of chromatin, which modulates DNA accessibility. High-resolution chromatin interaction maps have defined units of chromatin that are in spatial proximity, called topologically associated domains (TADs). TADs can be further classified based on expression activity, replication timing, or the histone marks or non-histone proteins associated with them. Independently, other chromatin domains have been defined by their likelihood to interact with non-DNA structures, such as the nuclear lamina. Lamina-associated domains (LADs) correlate with low gene expression and late replication timing. TADs and LADs have recently been evaluated with respect to cell-type-specific gene expression. The results shed light on the relevance of these forms of chromatin organization for transcriptional regulation, and address specifically how chromatin sequestration influences cell fate decisions during organismal development.
Collapse
Affiliation(s)
- Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
32
|
Randise-Hinchliff C, Coukos R, Sood V, Sumner MC, Zdraljevic S, Meldi Sholl L, Garvey Brickner D, Ahmed S, Watchmaker L, Brickner JH. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery. J Cell Biol 2016; 212:633-46. [PMID: 26953353 PMCID: PMC4792077 DOI: 10.1083/jcb.201508068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 11/23/2022] Open
Abstract
In yeast, transcription factors mediate gene positioning at the nuclear periphery and interchromosomal clustering. These phenomena are regulated by several different strategies that lead to dynamic changes in the spatial arrangement of genes over different time scales. In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales.
Collapse
Affiliation(s)
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Lauren Meldi Sholl
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | | | - Sara Ahmed
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Lauren Watchmaker
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201
| |
Collapse
|
33
|
Harr JC, Gonzalez-Sandoval A, Gasser SM. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 2016; 17:139-55. [PMID: 26792937 PMCID: PMC4783997 DOI: 10.15252/embr.201541809] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation.
Collapse
Affiliation(s)
- Jennifer C Harr
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Adriana Gonzalez-Sandoval
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Miozzo F, Sabéran-Djoneidi D, Mezger V. HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes. J Mol Biol 2015; 427:3793-816. [DOI: 10.1016/j.jmb.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
35
|
Mattout A, Cabianca DS, Gasser SM. Chromatin states and nuclear organization in development--a view from the nuclear lamina. Genome Biol 2015; 16:174. [PMID: 26303512 PMCID: PMC4549078 DOI: 10.1186/s13059-015-0747-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The spatial distribution of chromatin domains in interphase nuclei changes dramatically during development in multicellular organisms. A crucial question is whether nuclear organization is a cause or a result of differentiation. Genetic perturbation of lamina–heterochromatin interactions is helping to reveal the cross-talk between chromatin states and nuclear organization.
Collapse
Affiliation(s)
- Anna Mattout
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | - Daphne S Cabianca
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland. .,University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
36
|
Sharma R, Meister P. Linking dosage compensation and X chromosome nuclear organization in C. elegans. Nucleus 2015; 6:266-72. [PMID: 26055265 DOI: 10.1080/19491034.2015.1059546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Animal sex is determined by the number of X chromosomes in many species, creating unequal gene dosage (aneuploidy) between sexes. Dosage Compensation mechanisms equalize this dosage difference by regulating X-linked gene expression. In the nematode C. elegans the current model suggests that DC is achieved by a 2-fold transcriptional downregulation in hermaphrodites mediated by the Dosage Compensation Complex (DCC), which restricts access to RNA Polymerase II by an unknown mechanism. Taking a nuclear organization point of view, we showed that the male X chromosome resides in the pore proximal subnuclear compartment whereas the DCC bound to the X, inhibits this spatial organization in the hermaphrodites. Here we discuss our results and propose a model that reassigns the role of DCC from repression of genes to inhibition of activation.
Collapse
Affiliation(s)
- Rahul Sharma
- a Cell Fate and Nuclear Organization ; Institute of Cell Biology ; University of Bern ; Bern , Switzerland
| | | |
Collapse
|
37
|
Abstract
Nuclear pore complexes (NPCs) are composed of several copies of ∼30 different proteins called nucleoporins (Nups). NPCs penetrate the nuclear envelope (NE) and regulate the nucleocytoplasmic trafficking of macromolecules. Beyond this vital role, NPC components influence genome functions in a transport-independent manner. Nups play an evolutionarily conserved role in gene expression regulation that, in metazoans, extends into the nuclear interior. Additionally, in proliferative cells, Nups play a crucial role in genome integrity maintenance and mitotic progression. Here we discuss genome-related functions of Nups and their impact on essential DNA metabolism processes such as transcription, chromosome duplication, and segregation.
Collapse
|
38
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
39
|
Sharma R, Jost D, Kind J, Gómez-Saldivar G, van Steensel B, Askjaer P, Vaillant C, Meister P. Differential spatial and structural organization of the X chromosome underlies dosage compensation in C. elegans. Genes Dev 2014; 28:2591-6. [PMID: 25452271 PMCID: PMC4248290 DOI: 10.1101/gad.248864.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/20/2014] [Indexed: 01/04/2023]
Abstract
The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.
Collapse
Affiliation(s)
- Rahul Sharma
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Daniel Jost
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR 5672, Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France
| | - Jop Kind
- Division of Gene Regulation, The Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands
| | | | - Bas van Steensel
- Division of Gene Regulation, The Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands
| | - Peter Askjaer
- Spanish National Research Council (CSIC), The Junta of Andalusia (JA), Universidad Pablo de Olavide, Andalusian Center for Developmental Biology (CABD), 41013 Sevilla, Spain
| | - Cédric Vaillant
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR 5672, Centre National de la Recherche Scientifique (CNRS), 69007 Lyon, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
40
|
Sumoylation and transcription regulation at nuclear pores. Chromosoma 2014; 124:45-56. [PMID: 25171917 PMCID: PMC4339684 DOI: 10.1007/s00412-014-0481-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/22/2023]
Abstract
Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.
Collapse
|
41
|
González-Aguilera C, Palladino F, Askjaer P. C. elegans epigenetic regulation in development and aging. Brief Funct Genomics 2014; 13:223-34. [PMID: 24326118 PMCID: PMC4031453 DOI: 10.1093/bfgp/elt048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The precise developmental map of the Caenorhabditis elegans cell lineage, as well as a complete genome sequence and feasibility of genetic manipulation make this nematode species highly attractive to study the role of epigenetics during development. Genetic dissection of phenotypical traits, such as formation of egg-laying organs or starvation-resistant dauer larvae, has illustrated how chromatin modifiers may regulate specific cell-fate decisions and behavioral programs. Moreover, the transparent body of C. elegans facilitates non-invasive microscopy to study tissue-specific accumulation of heterochromatin at the nuclear periphery. We also review here recent findings on how small RNA molecules contribute to epigenetic control of gene expression that can be propagated for several generations and eventually determine longevity.
Collapse
|
42
|
Ptak C, Aitchison JD, Wozniak RW. The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 2014; 28:46-53. [PMID: 24657998 DOI: 10.1016/j.ceb.2014.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/21/2022]
Abstract
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John D Aitchison
- Seattle Biomedical Research Institute and Institute for Systems Biology, 307 Westlake Ave N, Seattle, WA 98109, USA.
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
43
|
From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression. Mol Cell Biol 2014; 34:2114-20. [PMID: 24615017 DOI: 10.1128/mcb.01730-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene gating hypothesis put forth by Blobel in 1985 was an alluring proposal outlining functions for the nuclear pore complex (NPC) in transcription and nuclear architecture. Over the past several decades, collective studies have unveiled a full catalog of nucleoporins (Nups) that comprise the NPC, structural arrangements of Nups in the nuclear pore, and mechanisms of nucleocytoplasmic transport. With this foundation, investigations of the gene gating hypothesis have now become possible. Studies of several model organisms provide credence for Nup functions in transcription, mRNA export, and genome organization. Surprisingly, Nups are not only involved in transcriptional events that occur at the nuclear periphery, but there are also novel roles for dynamic Nups within the nucleoplasmic compartment. Several tenants of the original gene gating hypothesis have yet to be addressed. Knowledge of whether the NPC impacts the organization of the genome to control subsets of genes is limited, and the cooperating molecular machinery or specific genomic anchoring sequences are not fully resolved. This minireview summarizes the current evidence for gene gating in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian model systems. These examples highlight new and unpredicted mechanisms for Nup impacts on transcription and questions that are left to be explored.
Collapse
|
44
|
Askjaer P, Galy V, Meister P. Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods Cell Biol 2014; 122:277-310. [DOI: 10.1016/b978-0-12-417160-2.00013-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
45
|
Ikegami K, Lieb JD. Integral nuclear pore proteins bind to Pol III-transcribed genes and are required for Pol III transcript processing in C. elegans. Mol Cell 2013; 51:840-9. [PMID: 24011592 DOI: 10.1016/j.molcel.2013.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022]
Abstract
Nuclear pores associate with active protein-coding genes in yeast and have been implicated in transcriptional regulation. Here, we show that in addition to transcriptional regulation, key components of C. elegans nuclear pores are required for processing of a subset of small nucleolar RNAs (snoRNAs) and tRNAs transcribed by RNA polymerase (Pol) III. Chromatin immunoprecipitation of NPP-13 and NPP-3, two integral nuclear pore components, and importin-β IMB-1 provides strong evidence that this requirement is direct. All three proteins associate specifically with tRNA and snoRNA genes undergoing Pol III transcription. These pore components bind immediately downstream of the Pol III preinitiation complex but are not required for Pol III recruitment. Instead, NPP-13 is required for cleavage of tRNA and snoRNA precursors into mature RNAs, whereas Pol II transcript processing occurs normally. Our data suggest that integral nuclear pore proteins act to coordinate transcription and processing of Pol III transcripts in C. elegans.
Collapse
Affiliation(s)
- Kohta Ikegami
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
46
|
Towbin BD, Gonzalez-Sandoval A, Gasser SM. Mechanisms of heterochromatin subnuclear localization. Trends Biochem Sci 2013; 38:356-63. [PMID: 23746617 DOI: 10.1016/j.tibs.2013.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022]
Abstract
Transcriptionally repressed heterochromatin becomes the dominant form of chromatin in most terminally differentiated cells. Moreover, in most cells, at least one class of heterochromatin is positioned adjacent to the nuclear lamina. Recent approaches have addressed the mechanism of heterochromatin localization, in order to determine whether spatial segregation contributes to gene repression. Findings in worms and human cells confirm a role for histone H3K9 methylation in heterochromatin positioning, identifying a modification that is also necessary for gene repression of worm transgenic arrays. These pathways appear to be conserved, although mutations in mammalian cells have weaker effects, possibly due to redundancy in positioning mechanisms. We propose a general model in which perinuclear anchoring is linked to an epigenetic propagation of the heterochromatic state, through histone modification.
Collapse
Affiliation(s)
- Benjamin D Towbin
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
47
|
Sharma R, Meister P. Nuclear organization in the nematode C. elegans. Curr Opin Cell Biol 2013; 25:395-402. [PMID: 23481208 DOI: 10.1016/j.ceb.2013.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.
Collapse
Affiliation(s)
- Rahul Sharma
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
48
|
Short B. Heat shock gene resides in a pore neighborhood. J Biophys Biochem Cytol 2013. [PMCID: PMC3587835 DOI: 10.1083/jcb.2005iti1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
49
|
Gasser SM. Open questions: epigenetics and the role of heterochromatin in development. BMC Biol 2013; 11:21. [PMID: 23497103 PMCID: PMC3598382 DOI: 10.1186/1741-7007-11-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/17/2022] Open
Affiliation(s)
- Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|