1
|
Kawaguchi S, Isshiki W, Kai T. Factories without walls: The molecular architecture and functions of non-membrane organelles in small RNA-guided genome protection. Biochim Biophys Acta Gen Subj 2025; 1869:130811. [PMID: 40319768 DOI: 10.1016/j.bbagen.2025.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Non-membrane organelles, Yb body and nuage, play an essential role in piRNA-guided genome defense in Drosophila gonad by mediating piRNA biogenesis and transposon silencing. Yb body, found in somatic follicle cells, is responsible for primary piRNA processing, while nuage, located in germline cells, facilitates the ping-pong cycle to amplify the piRNAs corresponding to both sense and antisense strands of the expressed transposons. These organelles are assembled by liquid-liquid phase separation (LLPS) and protein-protein interactions, integrating RNA helicases (Vasa, Armitage), Tudor domain-containing proteins (Krimper, Tejas, Qin/Kumo), and proteins containing both domains (Yb, SoYb, Spn-E). Within these condensates, we summarize the protein-protein interactions experimentally validated and predicted by AlphaFold3, providing new structural insights into the non-membrane organelle assembly. This review highlights how the dynamic organization of Yb body and nuage enables efficient RNA processing, ensuring transposon suppression and genome stability.
Collapse
Affiliation(s)
- Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| | - Wakana Isshiki
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, The University of Osaka, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Kawaguchi S, Xu X, Soga T, Yamaguchi K, Kawasaki R, Shimouchi R, Date S, Kai T. In silico screening by AlphaFold2 program revealed the potential binding partners of nuage-localizing proteins and piRNA-related proteins. eLife 2025; 13:RP101967. [PMID: 40259744 PMCID: PMC12014135 DOI: 10.7554/elife.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Protein-protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model's accuracy. We extended our analysis to include interactions between three representative nuage components-Vas, Squ, and Tej-and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.
Collapse
Affiliation(s)
| | - Xin Xu
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | | | | | | | - Ryota Shimouchi
- Graduate School of Information Science and Technology, Osaka UniversityOsakaJapan
| | - Susumu Date
- D3 Center, Osaka UniversityOsakaJapan
- Graduate School of Information Science and Technology, Osaka UniversityOsakaJapan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| |
Collapse
|
3
|
Suyama R, Kai T. piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs. FEBS J 2024. [PMID: 39739617 DOI: 10.1111/febs.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/23/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ninova M, Holmes H, Lomenick B, Fejes Tóth K, Aravin AA. Pervasive SUMOylation of heterochromatin and piRNA pathway proteins. CELL GENOMICS 2023; 3:100329. [PMID: 37492097 PMCID: PMC10363806 DOI: 10.1016/j.xgen.2023.100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 07/27/2023]
Abstract
Genome regulation involves complex protein interactions that are often mediated through post-translational modifications (PTMs). SUMOylation-modification by the small ubiquitin-like modifier (SUMO)-has been implicated in numerous essential processes in eukaryotes. In Drosophila, SUMO is required for viability and fertility, with its depletion from ovaries leading to heterochromatin loss and ectopic transposon and gene activation. Here, we developed a proteomics-based strategy to uncover the Drosophila ovarian "SUMOylome," which revealed that SUMOylation is widespread among proteins involved in heterochromatin regulation and different aspects of the Piwi-interacting small RNA (piRNA) pathway that represses transposons. Furthermore, we show that SUMOylation of several piRNA pathway proteins occurs in a Piwi-dependent manner. Together, these data highlight broad implications of protein SUMOylation in epigenetic regulation and indicate novel roles of this modification in the cellular defense against genomic parasites. Finally, this work provides a resource for the study of SUMOylation in other biological contexts in the Drosophila model.
Collapse
Affiliation(s)
- Maria Ninova
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Hannah Holmes
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Chen K, Yang X, Yang D, Huang Y. Spindle-E is essential for gametogenesis in the silkworm, Bombyx mori. INSECT SCIENCE 2023; 30:293-304. [PMID: 35866721 DOI: 10.1111/1744-7917.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As a defense mechanism against transposable elements, the PIWI-interacting RNA (piRNA) pathway maintains genomic integrity and ensures proper gametogenesis in gonads. Numerous factors are orchestrated to ensure normal operation of the piRNA pathway. Spindle-E (Spn-E) gene was one of the first genes shown to participate in the piRNA pathway. In this study, we performed functional analysis of Spn-E in the model lepidopteran insect, Bombyx mori. Unlike the germline-specific expression pattern observed in Drosophila and mouse, BmSpn-E was ubiquitously expressed in all tissues tested, and it was highly expressed in gonads. Immunofluorescent staining showed that BmSpn-E was localized in both germ cells and somatic cells in ovary and was expressed in spermatocytes in testis. We used a binary transgenic CRISPR/Cas9 system to construct BmSpn-E mutants. Loss of BmSpn-E expression caused derepression of transposons in gonads. We also found that mutant gonads were much smaller than wild-type gonads and that the number of germ cells was considerably lower in mutant gonads. Quantitative real-time PCR analysis and TUNEL staining revealed that apoptosis was greatly enhanced in mutant gonads. Further, we found that the BmSpn-E mutation impacted gonadal development and gametogenesis at the early larval stage. In summary, our data provided the first evidence that BmSpn-E plays vital roles in gonadal development and gametogenesis in B. mori.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
TDRD5 Is Required for Spermatogenesis and Oogenesis in Locusta migratoria. INSECTS 2022; 13:insects13030227. [PMID: 35323525 PMCID: PMC8953433 DOI: 10.3390/insects13030227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/13/2023]
Abstract
Tudor family proteins exist in all eukaryotic organisms and play a role in many cellular processes by recognizing and binding to proteins with methylated arginine or lysine residues. TDRD5, a member of Tudor domain-containing proteins (TDRDs), has been implicated in the P-element-induced wimpy testis-interacting RNA (piRNA) pathway and germ cell development in some model species, but little is known about its function in other species. Therefore, we identified and characterized LmTDRD5, the TDRD5 ortholog in Locusta migratoria, a hemimetabolous pest. The LmTdrd5 gene has 19 exons that encode a protein possessing a single copy of the Tudor domain and three LOTUS domains at its N-terminus. qRT-PCR analysis revealed a high LmTdrd5 expression level in genital glands. Using RNA interference, LmTdrd5 knockdown in males led to a lag in meiosis phase transition, decreased spermatid elongation and sperm production, and downregulated the expression of the two germ cell-specific transcription factors, LmCREM and LmACT, as well as the sperm tail marker gene LmQrich2.LmTdrd5 knockdown in females reduced the expression levels of vitellogenin (Vg) and Vg receptor (VgR) and impaired ovarian development and oocyte maturation, thus decreasing the hatchability rate. These results demonstrate that LmTdrd5 is essential for germ cell development and fertility in locusts, indicating a conserved function for TDRD5.
Collapse
|
8
|
Murakami R, Sumiyoshi T, Negishi L, Siomi MC. DEAD-box polypeptide 43 facilitates piRNA amplification by actively liberating RNA from Ago3-piRISC. EMBO Rep 2021; 22:e51313. [PMID: 33555135 PMCID: PMC8025031 DOI: 10.15252/embr.202051313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
The piRNA amplification pathway in Bombyx is operated by Ago3 and Siwi in their piRISC form. The DEAD‐box protein, Vasa, facilitates Ago3‐piRISC production by liberating cleaved RNAs from Siwi‐piRISC in an ATP hydrolysis‐dependent manner. However, the Vasa‐like factor facilitating Siwi‐piRISC production along this pathway remains unknown. Here, we identify DEAD‐box polypeptide 43 (DDX43) as the Vasa‐like protein functioning in Siwi‐piRISC production. DDX43 belongs to the helicase superfamily II along with Vasa, and it contains a similar helicase core. DDX43 also contains a K‐homology (KH) domain, a prevalent RNA‐binding domain, within its N‐terminal region. Biochemical analyses show that the helicase core is responsible for Ago3‐piRISC interaction and ATP hydrolysis, while the KH domain enhances the ATPase activity of the helicase core. This enhancement is independent of the RNA‐binding activity of the KH domain. For maximal DDX43 RNA‐binding activity, both the KH domain and helicase core are required. This study not only provides new insight into the piRNA amplification mechanism but also reveals unique collaborations between the two domains supporting DDX43 function within the pathway.
Collapse
Affiliation(s)
- Ryo Murakami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Wang L, Barbash DA, Kelleher ES. Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. PLoS Genet 2020; 16:e1008861. [PMID: 32525870 PMCID: PMC7310878 DOI: 10.1371/journal.pgen.1008861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 06/23/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
Abstract
In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby “adapting” piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to “escape” silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes. Transposable elements are mobile fragments of selfish DNA that burden host genomes with deleterious mutations and incite genome instability. Host cells employ a specialized small-RNA mediated silencing pathway, the piRNA pathway, to act as a genomic immune system suppressing the mobilization of TEs. Changes in genomic TE content are met with rapid changes in the piRNA pool, thereby maintaining host control over transposition. However, piRNA pathway proteins—which enact piRNA biogenesis and silence target TEs—also evolve adaptively. To isolate forces that underlie this adaptive evolution, we examined functional divergence between two Drosophila species for three adaptively evolving piRNA pathway proteins. To our surprise, we found very few differences in TE regulation, suggesting that evolution has not generally acted to enhance control of TE parasites. Rather, we discovered interspecific differences in the regulation of host mRNAs for two proteins, which suggested that proteins evolve to avoid off-target silencing of host transcripts. We propose that the avoidance of such “genomic autoimmunity” is an important and underappreciated force driving the adaptive evolution of piRNA proteins.
Collapse
Affiliation(s)
- Luyang Wang
- Dept. Biology & Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Daniel A. Barbash
- Dept. Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
| | - Erin S. Kelleher
- Dept. Biology & Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Venkei ZG, Choi CP, Feng S, Chen C, Jacobsen SE, Kim JK, Yamashita YM. A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage. PLoS Genet 2020; 16:e1008648. [PMID: 32168327 PMCID: PMC7094869 DOI: 10.1371/journal.pgen.1008648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation. The piRNA pathway that defends germline from selfish elements operates in two subpathways, one mediated by Piwi in Drosophila to silence transcription of targets in the nucleus and the other mediated by Aub and Ago3 to cleave transcripts of targets in the cytoplasm. How these two subpathways might coordinate with each other, particularly at the cell biological level, remains elusive. This study shows that Piwi interacts with Aub/Ago3 specifically in mitosis in nuage, the organelle that serves as the platform for piRNA cytoplasmic subpathway. Piwi returns to the nucleus at the end of mitosis, and our study suggests that dissociation of Piwi from nuage is facilitated by microtubule depolymerization by a kinesin Klp10A at the central spindle. We propose that cell-cycle-dependent interaction of two piRNA subpathways may play an important role in piRNA production.
Collapse
Affiliation(s)
- Zsolt G. Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte P. Choi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
| | - Cuie Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - John K. Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yukiko M. Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ge DT, Wang W, Tipping C, Gainetdinov I, Weng Z, Zamore PD. The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Mol Cell 2019; 74:982-995.e6. [PMID: 31076285 PMCID: PMC6636356 DOI: 10.1016/j.molcel.2019.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
PIWI-interacting RNAs (piRNAs) silence transposons in Drosophila ovaries, ensuring female fertility. Two coupled pathways generate germline piRNAs: the ping-pong cycle, in which the PIWI proteins Aubergine and Ago3 increase the abundance of pre-existing piRNAs, and the phased piRNA pathway, which generates strings of tail-to-head piRNAs, one after another. Proteins acting in the ping-pong cycle localize to nuage, whereas phased piRNA production requires Zucchini, an endonuclease on the mitochondrial surface. Here, we report that Armitage (Armi), an RNA-binding ATPase localized to both nuage and mitochondria, links the ping-pong cycle to the phased piRNA pathway. Mutations that block phased piRNA production deplete Armi from nuage. Armi ATPase mutants cannot support phased piRNA production and inappropriately bind mRNA instead of piRNA precursors. We propose that Armi shuttles between nuage and mitochondria, feeding precursor piRNAs generated by Ago3 cleavage into the Zucchini-dependent production of Aubergine- and Piwi-bound piRNAs on the mitochondrial surface.
Collapse
Affiliation(s)
- Daniel Tianfang Ge
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Wei Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cindy Tipping
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Spindle-E Acts Antivirally Against Alphaviruses in Mosquito Cells. Viruses 2018; 10:v10020088. [PMID: 29463033 PMCID: PMC5850395 DOI: 10.3390/v10020088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Mosquitoes transmit several human- and animal-pathogenic alphaviruses (Togaviridae family). In alphavirus-infected mosquito cells two different types of virus-specific small RNAs are produced as part of the RNA interference response: short-interfering (si)RNAs and PIWI-interacting (pi)RNAs. The siRNA pathway is generally thought to be the main antiviral pathway. Although an antiviral activity has been suggested for the piRNA pathway its role in host defences is not clear. Knock down of key proteins of the piRNA pathway (Ago3 and Piwi5) in Aedes aegypti-derived cells reduced the production of alphavirus chikungunya virus (CHIKV)-specific piRNAs but had no effect on virus replication. In contrast, knock down of the siRNA pathway key protein Ago2 resulted in an increase in virus replication. Similar results were obtained when expression of Piwi4 was silenced. Knock down of the helicase Spindle-E (SpnE), an essential co-factor of the piRNA pathway in Drosophila melanogaster, resulted in increased virus replication indicating that SpnE acts as an antiviral against alphaviruses such as CHIKV and the related Semliki Forest virus (SFV). Surprisingly, this effect was found to be independent of the siRNA and piRNA pathways in Ae. aegypti cells and specific for alphaviruses. This suggests a small RNA-independent antiviral function for this protein in mosquitoes.
Collapse
|
13
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
14
|
Ryazansky SS, Stolyarenko AD, Klenov MS, Gvozdev VA. Induction of transposon silencing in the Drosophila germline. BIOCHEMISTRY (MOSCOW) 2017; 82:565-571. [DOI: 10.1134/s0006297917050042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|