1
|
Banavar SP, Nelson CM. Mechanical properties pattern the skin. Science 2023; 382:880. [PMID: 37995222 DOI: 10.1126/science.adl2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Morphogens induce variations in tissue mechanics to promote feather budding.
Collapse
Affiliation(s)
- Samhita P Banavar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Oikonomou P, Cirne HC, Nerurkar NL. A chemo-mechanical model of endoderm movements driving elongation of the amniote hindgut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541363. [PMID: 37292966 PMCID: PMC10245718 DOI: 10.1101/2023.05.18.541363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While mechanical and biochemical descriptions of development are each essential, integration of upstream morphogenic cues with downstream tissue mechanics remains understudied in many contexts during vertebrate morphogenesis. A posterior gradient of Fibroblast Growth Factor (FGF) ligands generates a contractile force gradient in the definitive endoderm, driving collective cell movements to form the hindgut. Here, we developed a two-dimensional chemo-mechanical model to investigate how mechanical properties of the endoderm and transport properties of FGF coordinately regulate this process. We began by formulating a 2-D reaction-diffusion-advection model that describes the formation of an FGF protein gradient due to posterior displacement of cells transcribing unstable Fgf8 mRNA during axis elongation, coupled with translation, diffusion, and degradation of FGF protein. This was used together with experimental measurements of FGF activity in the chick endoderm to inform a continuum model of definitive endoderm as an active viscous fluid that generates contractile stresses in proportion to FGF concentration. The model replicated key aspects of hindgut morphogenesis, confirms that heterogeneous - but isotropic - contraction is sufficient to generate large anisotropic cell movements, and provides new insight into how chemo-mechanical coupling across the mesoderm and endoderm coordinates hindgut elongation with outgrowth of the tailbud.
Collapse
Affiliation(s)
| | - Helena C. Cirne
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
3
|
Aureille J, Pezet M, Pernet L, Mazzega J, Grichine A, Guilluy C, Dolega ME. Cell fluorescence photoactivation as a method to select and study cellular subpopulations grown in mechanically heterogeneous environments. Mol Biol Cell 2021; 32:1409-1416. [PMID: 34133212 PMCID: PMC8351743 DOI: 10.1091/mbc.e20-10-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central challenge to the biology of development and disease is deciphering how individual cells process and respond to numerous biochemical and mechanical signals originating from the environment. Recent advances in genomic studies enabled the acquisition of information about population heterogeneity; however, these so far are poorly linked with the spatial heterogeneity of biochemical and mechanical cues. Whereas in vitro models offer superior control over spatiotemporal distribution of numerous mechanical parameters, researchers are limited by the lack of methods to select subpopulations of cells in order to understand how environmental heterogeneity directs the functional collective response. To circumvent these limitations, we present a method based on the use of photo convertible proteins, which when expressed within cells and activated with light, gives a stable fluorescence fingerprint enabling subsequent sorting and lysis for genomics analysis. Using this technique, we study the spatial distribution of genetic alterations on well-characterized local mechanical stimulation within the epithelial monolayer. Our method is an in vitro alternative to laser microdissection, which so far has found a broad application in ex vivo studies.
Collapse
Affiliation(s)
- Julien Aureille
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Mylène Pezet
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Lydia Pernet
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Jacques Mazzega
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Christophe Guilluy
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| | - Monika Elzbieta Dolega
- Institute for Advanced Biosciences, University Grenoble Alpes, Inserm U1209, CNRS UMR 5309 Grenoble, France
| |
Collapse
|
4
|
Zhao B, Li N, Xie T, Bagheri Y, Liang C, Keshri P, Sun Y, You M. Quantifying tensile forces at cell-cell junctions with a DNA-based fluorescent probe. Chem Sci 2020; 11:8558-8566. [PMID: 34123115 PMCID: PMC8163409 DOI: 10.1039/d0sc01455a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells are physically contacting with each other. Direct and precise quantification of forces at cell–cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors. A DNA-based fluorescent probe to quantify the magnitude and distribution of tensile forces at cell–cell junctions.![]()
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Ningwei Li
- Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Tianfa Xie
- Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Chungwen Liang
- Computational and Modeling Core, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst Massachusetts 01003 USA
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Yubing Sun
- Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| |
Collapse
|
5
|
Pampaloni NP, Rago I, Calaresu I, Cozzarini L, Casalis L, Goldoni A, Ballerini L, Scaini D. Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures. Dev Neurobiol 2019; 80:316-331. [PMID: 31314946 DOI: 10.1002/dneu.22711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Abstract
The increasing engineering of carbon-based nanomaterials as components of neuroregenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favor dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned entorhinal-hippocampal complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fiber sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
| | - Ilaria Rago
- Elettra Sincrotrone Trieste, Trieste, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - Ivo Calaresu
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Luca Cozzarini
- Elettra Sincrotrone Trieste, Trieste, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | | | | | - Laura Ballerini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Denis Scaini
- International School for Advanced Studies (SISSA), Trieste, Italy.,Elettra Sincrotrone Trieste, Trieste, Italy
| |
Collapse
|
6
|
Abstract
Elucidating the mechanical force-induced regulatory machineries is extremely important for further understanding of the mechanisms underlying development, regeneration, and disease. Recent work demonstrates that mechanical forces generated by blood flow in liver vessels function to regulate embryonic liver development and may also contribute to regeneration in adult liver.
Collapse
Affiliation(s)
- Jiao Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|