1
|
Kruse K, Berthoz R, Barberi L, Reymann AC, Riveline D. Actomyosin clusters as active units shaping living matter. Curr Biol 2024; 34:R1045-R1058. [PMID: 39437723 DOI: 10.1016/j.cub.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stress generation by the actin cytoskeleton shapes cells and tissues. Despite impressive progress in live imaging and quantitative physical descriptions of cytoskeletal network dynamics, the connection between processes at molecular scales and spatiotemporal patterns at the cellular scale is still unclear. Here, we review studies reporting actomyosin clusters of micrometre size and with lifetimes of several minutes in a large number of organisms, ranging from fission yeast to humans. Such structures have also been found in reconstituted systems in vitro and in theoretical analyses of cytoskeletal dynamics. We propose that tracking these clusters could provide a simple readout for characterising living matter. Spatiotemporal patterns of clusters could serve as determinants of morphogenetic processes that have similar roles in diverse organisms.
Collapse
Affiliation(s)
- Karsten Kruse
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland.
| | - Rémi Berthoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Luca Barberi
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland
| | - Anne-Cécile Reymann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
2
|
Kamps D, Koch J, Juma VO, Campillo-Funollet E, Graessl M, Banerjee S, Mazel T, Chen X, Wu YW, Portet S, Madzvamuse A, Nalbant P, Dehmelt L. Optogenetic Tuning Reveals Rho Amplification-Dependent Dynamics of a Cell Contraction Signal Network. Cell Rep 2020; 33:108467. [PMID: 33264629 PMCID: PMC7710677 DOI: 10.1016/j.celrep.2020.108467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/16/2020] [Accepted: 11/10/2020] [Indexed: 01/21/2023] Open
Abstract
Local cell contraction pulses play important roles in tissue and cell morphogenesis. Here, we improve a chemo-optogenetic approach and apply it to investigate the signal network that generates these pulses. We use these measurements to derive and parameterize a system of ordinary differential equations describing temporal signal network dynamics. Bifurcation analysis and numerical simulations predict a strong dependence of oscillatory system dynamics on the concentration of GEF-H1, an Lbc-type RhoGEF, which mediates the positive feedback amplification of Rho activity. This prediction is confirmed experimentally via optogenetic tuning of the effective GEF-H1 concentration in individual living cells. Numerical simulations show that pulse amplitude is most sensitive to external inputs into the myosin component at low GEF-H1 concentrations and that the spatial pulse width is dependent on GEF-H1 diffusion. Our study offers a theoretical framework to explain the emergence of local cell contraction pulses and their modulation by biochemical and mechanical signals.
Collapse
Affiliation(s)
- Dominic Kamps
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Johannes Koch
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Victor O Juma
- Department of Mathematics, University of Sussex, Pevensey III, Brighton BN1 9QH, UK
| | | | - Melanie Graessl
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Soumya Banerjee
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Tomáš Mazel
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Xi Chen
- Chemical Genomics Centre of the Max-Planck Society, 44227 Dortmund, Germany; The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, P.R. China
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max-Planck Society, 44227 Dortmund, Germany; Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Stephanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anotida Madzvamuse
- Department of Mathematics, University of Sussex, Pevensey III, Brighton BN1 9QH, UK; Department of Mathematics, University of Johannesburg, South Africa; Universita degli Studi di Bari Aldo Moro, Bari, Italy
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany.
| |
Collapse
|
3
|
Bolado-Carrancio A, Rukhlenko OS, Nikonova E, Tsyganov MA, Wheeler A, Garcia-Munoz A, Kolch W, von Kriegsheim A, Kholodenko BN. Periodic propagating waves coordinate RhoGTPase network dynamics at the leading and trailing edges during cell migration. eLife 2020; 9:58165. [PMID: 32705984 PMCID: PMC7380942 DOI: 10.7554/elife.58165] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
Migrating cells need to coordinate distinct leading and trailing edge dynamics but the underlying mechanisms are unclear. Here, we combine experiments and mathematical modeling to elaborate the minimal autonomous biochemical machinery necessary and sufficient for this dynamic coordination and cell movement. RhoA activates Rac1 via DIA and inhibits Rac1 via ROCK, while Rac1 inhibits RhoA through PAK. Our data suggest that in motile, polarized cells, RhoA–ROCK interactions prevail at the rear, whereas RhoA-DIA interactions dominate at the front where Rac1/Rho oscillations drive protrusions and retractions. At the rear, high RhoA and low Rac1 activities are maintained until a wave of oscillatory GTPase activities from the cell front reaches the rear, inducing transient GTPase oscillations and RhoA activity spikes. After the rear retracts, the initial GTPase pattern resumes. Our findings show how periodic, propagating GTPase waves coordinate distinct GTPase patterns at the leading and trailing edge dynamics in moving cells.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
| | - Elena Nikonova
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
| | - Mikhail A Tsyganov
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland.,Institute of Theoretical and Experimental Biophysics, Pushchino, Russian Federation
| | - Anne Wheeler
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Amaya Garcia-Munoz
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland
| | - Alex von Kriegsheim
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland.,Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
4
|
Yang Y, Wu M. Rhythmicity and waves in the cortex of single cells. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0116. [PMID: 29632268 PMCID: PMC5904302 DOI: 10.1098/rstb.2017.0116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 12/15/2022] Open
Abstract
Emergence of dynamic patterns in the form of oscillations and waves on the cortex of single cells is a fascinating and enigmatic phenomenon. Here we outline various theoretical frameworks used to model pattern formation with the goal of reducing complex, heterogeneous patterns into key parameters that are biologically tractable. We also review progress made in recent years on the quantitative and molecular definitions of these terms, which we believe have begun to transform single-cell dynamic patterns from a purely observational and descriptive subject to more mechanistic studies. Specifically, we focus on the nature of local excitable and oscillation events, their spatial couplings leading to propagating waves and the role of active membrane. Instead of arguing for their functional importance, we prefer to consider such patterns as basic properties of dynamic systems. We discuss how knowledge of these patterns could be used to dissect the structure of cellular organization and how the network-centric view could help define cellular functions as transitions between different dynamical states. Last, we speculate on how these patterns could encode temporal and spatial information. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore
| | - Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore
| |
Collapse
|