1
|
Sheedy CJ, Chowdhury SP, Ali BA, Miyamoto J, Pang EZ, Bacal J, Tavasoli KU, Richardson CD, Gardner BM. PEX1 G843D remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome. J Biol Chem 2025; 301:108467. [PMID: 40158855 DOI: 10.1016/j.jbc.2025.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in HsPEX1 and HsPEX6 disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the HsPEX1G843D allele, which results in a reduction of peroxisomal protein import. Here we demonstrate that in vitro the homologous yeast mutant, ScPex1G700D, reduces the stability of Pex1's active D2 ATPase domain and impairs assembly with Pex6, but can still form an active AAA-ATPase motor. In vivo, ScPex1G700D exhibits only a slight defect in peroxisome import. We generated model human HsPEX1G843D cell lines and show that PEX1G843D is rapidly degraded by the proteasome, but that induced overexpression of PEX1G843D can restore peroxisome import. Additionally, we found that the G843D mutation reduces PEX1's affinity for PEX6, and that impaired assembly is sufficient to induce degradation of PEX1WT. Lastly, we found that fusing a deubiquitinase to PEX1G843D significantly hinders its degradation in mammalian cells. Altogether, our findings suggest a novel regulatory mechanism for PEX1/PEX6 hexamer assembly and highlight the potential of protein stabilization as a therapeutic strategy for PBDs arising from the G843D mutation and other PEX1 hypomorphs.
Collapse
Affiliation(s)
- Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Bashir A Ali
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julia Miyamoto
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Eric Z Pang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Sheedy CJ, Chowdhury SP, Ali BA, Miyamoto J, Pang EZ, Bacal J, Tavasoli KU, Richardson CD, Gardner BM. PEX1 G843D remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627778. [PMID: 39713301 PMCID: PMC11661142 DOI: 10.1101/2024.12.10.627778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in HsPEX1 and HsPEX6 disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the HsPEX1G843D allele, which results in a reduction of peroxisomal protein import. Here we demonstrate that in vitro the homologous yeast mutant, ScPex1G700D, reduces the stability of Pex1's active D2 ATPase domain and impairs assembly with Pex6, but can still form an active AAA-ATPase motor. In vivo, ScPex1G700D exhibits only a slight defect in peroxisome import. We generated model human HsPEX1G843D cell lines and show that PEX1G843D is rapidly degraded by the proteasome, but that induced overexpression of PEX1G843D can restore peroxisome import. Additionally, we found that the G843D mutation reduces PEX1's affinity for PEX6, and that impaired assembly is sufficient to induce degradation of PEX1WT. Lastly, we found that fusing a deubiquitinase to PEX1G843D significantly hinders its degradation in mammalian cells. Altogether, our findings suggest a novel regulatory mechanism for PEX1/PEX6 hexamer assembly and highlight the potential of protein stabilization as a therapeutic strategy for PBDs arising from the G843D mutation and other PEX1 hypomorphs.
Collapse
Affiliation(s)
- Connor J Sheedy
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Bashir A Ali
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julia Miyamoto
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Eric Z Pang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katherine U Tavasoli
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Sharninghausen R, Hwang J, Dennison DD, Baldridge RD. Identification of ERAD-dependent degrons for the endoplasmic reticulum lumen. eLife 2024; 12:RP89606. [PMID: 39531282 PMCID: PMC11556787 DOI: 10.7554/elife.89606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Degrons are minimal protein features that are sufficient to target proteins for degradation. In most cases, degrons allow recognition by components of the cytosolic ubiquitin proteasome system. Currently, all of the identified degrons only function within the cytosol. Using Saccharomyces cerevisiae, we identified the first short linear sequences that function as degrons from the endoplasmic reticulum (ER) lumen. We show that when these degrons are transferred to proteins, they facilitate proteasomal degradation through the endoplasmic reticulum associated degradation (ERAD) system. These degrons enable degradation of both luminal and integral membrane ER proteins, expanding the types of proteins that can be targeted for degradation in budding yeast and mammalian tissue culture. This discovery provides a framework to target proteins for degradation from the previously unreachable ER lumen and builds toward therapeutic approaches that exploit the highly conserved ERAD system.
Collapse
Affiliation(s)
- Rachel Sharninghausen
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
| | - Devon D Dennison
- Cellular and Molecular Biology Program, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn ArborUnited States
- Cellular and Molecular Biology Program, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
4
|
Sharninghausen R, Hwang J, Dennison DD, Baldridge RD. Identification of ERAD-dependent degrons for the endoplasmic reticulum lumen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.21.546000. [PMID: 39149235 PMCID: PMC11326120 DOI: 10.1101/2023.06.21.546000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Degrons are minimal protein features that are sufficient to target proteins for degradation. In most cases, degrons allow recognition by components of the cytosolic ubiquitin proteasome system. Currently, all of the identified degrons only function within the cytosol. Using Saccharomyces cerevisiae, we identified the first short linear sequences that function as degrons from the endoplasmic reticulum (ER) lumen. We show that when these degrons are transferred to proteins, they facilitate proteasomal degradation through the ERAD system. These degrons enable degradation of both luminal and integral membrane ER proteins, expanding the types of proteins that can be targeted for degradation in budding yeast and mammalian tissue culture. This discovery provides a framework to target proteins for degradation from the previously unreachable ER lumen and builds toward therapeutic approaches that exploit the highly-conserved ERAD system.
Collapse
Affiliation(s)
- Rachel Sharninghausen
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jiwon Hwang
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Devon D. Dennison
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ryan D. Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Rapoport TA. A Life of Translocations. Annu Rev Biochem 2024; 93:1-20. [PMID: 38029368 DOI: 10.1146/annurev-biochem-030122-040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Writing a career retrospective for this prestigious series is a huge challenge. Is my story really of that much interest? One thing that is different about my life in science is the heavy influence of the turmoil of the past century. Born in the US, raised in East Germany, and returning to the US relatively late in life, I experienced research under both suboptimal and privileged conditions. My scientific story, like the political winds that blew me from one continent to the next, involved shifts into different fields. For advice to young scientists, I would suggest: Don't be afraid to start something new, it pays to be persistent, and science is a passion. In addition to telling my own story, this article also provides the opportunity to express my gratitude to my trainees and colleagues and to convey my conviction that we have the best job on earth.
Collapse
Affiliation(s)
- Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Skowyra ML, Feng P, Rapoport TA. Towards solving the mystery of peroxisomal matrix protein import. Trends Cell Biol 2024; 34:388-405. [PMID: 37743160 PMCID: PMC10957506 DOI: 10.1016/j.tcb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Ali BA, Judy RM, Chowdhury S, Jacobsen NK, Castanzo DT, Carr KL, Richardson CD, Lander GC, Martin A, Gardner BM. The Pex6 N1 domain is required for Pex15 binding and proper assembly with Pex1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557798. [PMID: 37745580 PMCID: PMC10516024 DOI: 10.1101/2023.09.15.557798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The heterohexameric AAA-ATPase Pex1/Pex6 is essential for the formation and maintenance of peroxisomes. Pex1/Pex6, similar to other AAA-ATPases, uses the energy from ATP hydrolysis to mechanically thread substrate proteins through its central pore, thereby unfolding them. In related AAA-ATPase motors, substrates are recruited through binding to the motor's N-terminal domains or N-terminally bound co-factors. Here we use structural and biochemical techniques to characterize the function of the N1 domain in Pex6 from budding yeast, S. cerevisiae. We found that although Pex1/ΔN1-Pex6 is an active ATPase in vitro, it does not support Pex1/Pex6 function at the peroxisome in vivo. An X-ray crystal structure of the isolated Pex6 N1 domain shows that the Pex6 N1 domain shares the same fold as the N terminal domains of PEX1, CDC48, or NSF, despite poor sequence conservation. Integrating this structure with a cryo-EM reconstruction of Pex1/Pex6, AlphaFold2 predictions, and biochemical assays shows that Pex6 N1 mediates binding to both the peroxisomal membrane tether Pex15 and an extended loop from the D2 ATPase domain of Pex1 that influences Pex1/Pex6 heterohexamer stability. Given the direct interactions with both Pex15 and the D2 ATPase domains, the Pex6 N1 domain is poised to coordinate binding of co-factors and substrates with Pex1/Pex6 ATPase activity.
Collapse
Affiliation(s)
- Bashir A Ali
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Ryan M Judy
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Nicole K Jacobsen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Dominic T Castanzo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Kaili L Carr
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Pedersen RTA, Hsia RC, Zheng Y. In Vitro Reconstitution in Xenopus laevis Egg Extracts Reveals Molecular Mechanisms That Control B-Type Lamin Assembly. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1098-1099. [PMID: 37613209 DOI: 10.1093/micmic/ozad067.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Ross T A Pedersen
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD, United States
| | - Ru-Ching Hsia
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD, United States
| | - Yixian Zheng
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD, United States
| |
Collapse
|
9
|
Skowyra ML, Rapoport TA. Cell-free reconstitution of peroxisomal matrix protein import using Xenopus egg extract. STAR Protoc 2023; 4:102111. [PMID: 36853666 PMCID: PMC9947420 DOI: 10.1016/j.xpro.2023.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 02/13/2023] Open
Abstract
Peroxisomes are vital metabolic organelles whose matrix enzymes are imported from the cytosol in a folded state by the soluble receptor PEX5. The import mechanism has been challenging to decipher because of the lack of suitable in vitro systems. Here, we present a protocol for reconstituting matrix protein import using Xenopus egg extract. We describe how extract is prepared, how to replace endogenous PEX5 with recombinant versions, and how to perform and interpret a peroxisomal import reaction using a fluorescent cargo. For complete details on the use and execution of this protocol, please refer to Skowyra and Rapoport (2022).1.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Mevissen TET, Prasad AV, Walter JC. TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep 2023; 42:112125. [PMID: 36807144 PMCID: PMC10435667 DOI: 10.1016/j.celrep.2023.112125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor and E3 ubiquitin ligase that promotes destruction of a broad range of pathogens. TRIM21 also underlies the antibody-dependent protein targeting method Trim-Away. Current evidence suggests that TRIM21 binding to antibodies leads to formation of a self-anchored K63 ubiquitin chain on the N terminus of TRIM21 that triggers the destruction of TRIM21, antibody, and target protein. Here, we report that addition of antibody and TRIM21 to Xenopus egg extracts promotes efficient degradation of endogenous target proteins, establishing cell-free Trim-Away as a powerful tool to interrogate protein function. Chemical methylation of TRIM21 had no effect on target proteolysis, whereas deletion of all lysine residues in targets abolished their ubiquitination and proteasomal degradation. These results demonstrate that target protein, but not TRIM21, polyubiquitination is required for Trim-Away, and they suggest that current models of TRIM21 function should be fundamentally revised.
Collapse
Affiliation(s)
- Tycho E T Mevissen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| | - Anisa V Prasad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
11
|
Skowyra ML, Rapoport TA. PEX5 translocation into and out of peroxisomes drives matrix protein import. Mol Cell 2022; 82:3209-3225.e7. [PMID: 35931083 PMCID: PMC9444985 DOI: 10.1016/j.molcel.2022.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022]
Abstract
Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal enzymes are imported from the cytosol by the receptor PEX5, which interacts with a docking complex in the peroxisomal membrane and then returns to the cytosol after monoubiquitination by a membrane-embedded ubiquitin ligase. The mechanism by which PEX5 shuttles between cytosol and peroxisomes and releases cargo inside the lumen is unclear. Here, we use Xenopus egg extract to demonstrate that PEX5 accompanies cargo completely into the lumen, utilizing WxxxF/Y motifs near its N terminus that bind a lumenal domain of the docking complex. PEX5 recycling is initiated by an amphipathic helix that binds to the lumenal side of the ubiquitin ligase. The N terminus then emerges in the cytosol for monoubiquitination. Finally, PEX5 is extracted from the lumen, resulting in the unfolding of the receptor and cargo release. Our results reveal the unique mechanism by which PEX5 ferries proteins into peroxisomes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
13
|
Nuebel E, Morgan JT, Fogarty S, Winter JM, Lettlova S, Berg JA, Chen YC, Kidwell CU, Maschek JA, Clowers KJ, Argyriou C, Chen L, Wittig I, Cox JE, Roh-Johnson M, Braverman N, Bonkowsky J, Gygi SP, Rutter J. The biochemical basis of mitochondrial dysfunction in Zellweger Spectrum Disorder. EMBO Rep 2021; 22:e51991. [PMID: 34351705 DOI: 10.15252/embr.202051991] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 01/09/2023] Open
Abstract
Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.
Collapse
Affiliation(s)
- Esther Nuebel
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, USA
| | - Jeffrey T Morgan
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarah Fogarty
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sandra Lettlova
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Yu-Chan Chen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Chelsea U Kidwell
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Katie J Clowers
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | | | - Lingxiao Chen
- Department of Pathology, McGill University, Montreal, ON, Canada
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core Research Facilities, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Nancy Braverman
- Department of Human Genetics, McGill University, Montreal, ON, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, ON, Canada
| | - Joshua Bonkowsky
- Primary Children's Hospital, University of Utah, Salt Lake City, UT, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of Medicine, Boston, MA, USA
| | - Jared Rutter
- Howard Hughes Medical Institute, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|