1
|
Tyagi S, Higerd-Rusli GP, Akin EJ, Waxman SG, Dib-Hajj SD. Sculpting excitable membranes: voltage-gated ion channel delivery and distribution. Nat Rev Neurosci 2025:10.1038/s41583-025-00917-2. [PMID: 40175736 DOI: 10.1038/s41583-025-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
The polarized and domain-specific distribution of membrane ion channels is essential for neuronal homeostasis, but delivery of these proteins to distal neuronal compartments (such as the axonal ends of peripheral sensory neurons) presents a logistical challenge. Recent developments have enabled the real-time imaging of single protein trafficking and the investigation of the life cycle of ion channels across neuronal compartments. These studies have revealed a highly regulated process involving post-translational modifications, vesicular sorting, motor protein-driven transport and targeted membrane insertion. Emerging evidence suggests that neuronal activity and disease states can dynamically modulate ion channel localization, directly influencing excitability. This Review synthesizes current knowledge on the spatiotemporal regulation of ion channel trafficking in both central and peripheral nervous system neurons. Understanding these processes not only advances our fundamental knowledge of neuronal excitability, but also reveals potential therapeutic targets for disorders involving aberrant ion channel distribution, such as chronic pain and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.
| | - Grant P Higerd-Rusli
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeth J Akin
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
2
|
Tyagi S, Higerd-Rusli GP, Akin EJ, Baker CA, Liu S, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Real-time imaging of axonal membrane protein life cycles. Nat Protoc 2024; 19:2771-2802. [PMID: 38831222 PMCID: PMC11721981 DOI: 10.1038/s41596-024-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/12/2024] [Indexed: 06/05/2024]
Abstract
The construction of neuronal membranes is a dynamic process involving the biogenesis, vesicular packaging, transport, insertion and recycling of membrane proteins. Optical imaging is well suited for the study of protein spatial organization and transport. However, various shortcomings of existing imaging techniques have prevented the study of specific types of proteins and cellular processes. Here we describe strategies for protein tagging and labeling, cell culture and microscopy that enable the real-time imaging of axonal membrane protein trafficking and subcellular distribution as they progress through some stages of their life cycle. First, we describe a process for engineering membrane proteins with extracellular self-labeling tags (either HaloTag or SNAPTag), which can be labeled with fluorescent ligands of various colors and cell permeability, providing flexibility for investigating the trafficking and spatiotemporal regulation of multiple membrane proteins in neuronal compartments. Next, we detail the dissection, transfection and culture of dorsal root ganglion sensory neurons in microfluidic chambers, which physically compartmentalizes cell bodies and distal axons. Finally, we describe four labeling and imaging procedures that utilize these enzymatically tagged proteins, flexible fluorescent labels and compartmentalized neuronal cultures to study axonal membrane protein anterograde and retrograde transport, the cotransport of multiple proteins, protein subcellular localization, exocytosis and endocytosis. Additionally, we generated open-source software for analyzing the imaging data in a high throughput manner. The experimental and analysis workflows provide an approach for studying the dynamics of neuronal membrane protein homeostasis, addressing longstanding challenges in this area. The protocol requires 5-7 days and expertise in cell culture and microscopy.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Grant P Higerd-Rusli
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Elizabeth J Akin
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Christopher A Baker
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Fadia B Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
3
|
Bekku Y, Zotter B, You C, Piehler J, Leonard WJ, Salzer JL. Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Dev Cell 2024; 59:627-644.e10. [PMID: 38309265 PMCID: PMC11089820 DOI: 10.1016/j.devcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.
Collapse
Affiliation(s)
- Yoko Bekku
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Brendan Zotter
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James L Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
4
|
Osonoi S, Mizukami H, Takeuchi Y, Sugawa H, Ogasawara S, Takaku S, Sasaki T, Kudoh K, Ito K, Sango K, Nagai R, Yamamoto Y, Daimon M, Yamamoto H, Yagihashi S. RAGE activation in macrophages and development of experimental diabetic polyneuropathy. JCI Insight 2022; 7:160555. [PMID: 36477360 PMCID: PMC9746912 DOI: 10.1172/jci.insight.160555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
It is suggested that activation of receptor for advanced glycation end products (RAGE) induces proinflammatory response in diabetic nerve tissues. Macrophage infiltration is invoked in the pathogenesis of diabetic polyneuropathy (DPN), while the association between macrophage and RAGE activation and the downstream effects of macrophages remain to be fully clarified in DPN. This study explored the role of RAGE in the pathogenesis of DPN through the modified macrophages. Infiltrating proinflammatory macrophages impaired insulin sensitivity, atrophied the neurons in dorsal root ganglion, and slowed retrograde axonal transport (RAT) in the sciatic nerve of type 1 diabetic mice. RAGE-null mice showed an increase in the population of antiinflammatory macrophages, accompanied by intact insulin sensitivity, normalized ganglion cells, and RAT. BM transplantation from RAGE-null mice to diabetic mice protected the peripheral nerve deficits, suggesting that RAGE is a major determinant for the polarity of macrophages in DPN. In vitro coculture analyses revealed proinflammatory macrophage-elicited insulin resistance in the primary neuronal cells isolated from dorsal root ganglia. Applying time-lapse recording disclosed a direct impact of proinflammatory macrophage and insulin resistance on the RAT deficits in primary neuronal cultures. These results provide a potentially novel insight into the development of RAGE-related DPN.
Collapse
Affiliation(s)
- Sho Osonoi
- Department of Pathology and Molecular Medicine and,Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine and,Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Higashi-ku, Kumamoto, Japan
| | | | - Shizuka Takaku
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | | | | | - Koichi Ito
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Higashi-ku, Kumamoto, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | |
Collapse
|
5
|
Higerd-Rusli GP, Alsaloum M, Tyagi S, Sarveswaran N, Estacion M, Akin EJ, Dib-Hajj FB, Liu S, Sosniak D, Zhao P, Dib-Hajj SD, Waxman SG. Depolarizing Na V and Hyperpolarizing K V Channels Are Co-Trafficked in Sensory Neurons. J Neurosci 2022; 42:4794-4811. [PMID: 35589395 PMCID: PMC9188389 DOI: 10.1523/jneurosci.0058-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Neuronal excitability relies on coordinated action of functionally distinction channels. Voltage-gated sodium (NaV) and potassium (KV) channels have distinct but complementary roles in firing action potentials: NaV channels provide depolarizing current while KV channels provide hyperpolarizing current. Mutations and dysfunction of multiple NaV and KV channels underlie disorders of excitability, including pain and epilepsy. Modulating ion channel trafficking may offer a potential therapeutic strategy for these diseases. A fundamental question, however, is whether these channels with distinct functional roles are transported independently or packaged together in the same vesicles in sensory axons. We have used Optical Pulse-Chase Axonal Long-distance imaging to investigate trafficking of NaV and KV channels and other axonal proteins from distinct functional classes in live rodent sensory neurons (from male and female rats). We show that, similar to NaV1.7 channels, NaV1.8 and KV7.2 channels are transported in Rab6a-positive vesicles, and that each of the NaV channel isoforms expressed in healthy, mature sensory neurons (NaV1.6, NaV1.7, NaV1.8, and NaV1.9) is cotransported in the same vesicles. Further, we show that multiple axonal membrane proteins with different physiological functions (NaV1.7, KV7.2, and TNFR1) are cotransported in the same vesicles. However, vesicular packaging of axonal membrane proteins is not indiscriminate, since another axonal membrane protein (NCX2) is transported in separate vesicles. These results shed new light on the development and organization of sensory neuron membranes, revealing complex sorting of axonal proteins with diverse physiological functions into specific transport vesicles.SIGNIFICANCE STATEMENT Normal neuronal excitability is dependent on precise regulation of membrane proteins, including NaV and KV channels, and imbalance in the level of these channels at the plasma membrane could lead to excitability disorders. Ion channel trafficking could potentially be targeted therapeutically, which would require better understanding of the mechanisms underlying trafficking of functionally diverse channels. Optical Pulse-chase Axonal Long-distance imaging in live neurons permitted examination of the specificity of ion channel trafficking, revealing co-packaging of axonal proteins with opposing physiological functions into the same transport vesicles. This suggests that additional trafficking mechanisms are necessary to regulate levels of surface channels, and reveals an important consideration for therapeutic strategies that target ion channel trafficking for the treatment of excitability disorders.
Collapse
Affiliation(s)
- Grant P Higerd-Rusli
- MD/PhD Program
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Matthew Alsaloum
- MD/PhD Program
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sidharth Tyagi
- MD/PhD Program
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Nivedita Sarveswaran
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Mark Estacion
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Elizabeth J Akin
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Fadia B Dib-Hajj
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Daniel Sosniak
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Peng Zhao
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research and
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
6
|
Almeida RG, Williamson JM, Madden ME, Early JJ, Voas MG, Talbot WS, Bianco IH, Lyons DA. Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Curr Biol 2021; 31:3743-3754.e5. [PMID: 34270947 PMCID: PMC8445327 DOI: 10.1016/j.cub.2021.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Myelination of axons by oligodendrocytes enables fast saltatory conduction. Oligodendrocytes are responsive to neuronal activity, which has been shown to induce changes to myelin sheaths, potentially to optimize conduction and neural circuit function. However, the cellular bases of activity-regulated myelination in vivo are unclear, partly due to the difficulty of analyzing individual myelinated axons over time. Activity-regulated myelination occurs in specific neuronal subtypes and can be mediated by synaptic vesicle fusion, but several questions remain: it is unclear whether vesicular fusion occurs stochastically along axons or in discrete hotspots during myelination and whether vesicular fusion regulates myelin targeting, formation, and/or growth. It is also unclear why some neurons, but not others, exhibit activity-regulated myelination. Here, we imaged synaptic vesicle fusion in individual neurons in living zebrafish and documented robust vesicular fusion along axons during myelination. Surprisingly, we found that axonal vesicular fusion increased upon and required myelination. We found that axonal vesicular fusion was enriched in hotspots, namely the heminodal non-myelinated domains into which sheaths grew. Blocking vesicular fusion reduced the stable formation and growth of myelin sheaths, and chemogenetically stimulating neuronal activity promoted sheath growth. Finally, we observed high levels of axonal vesicular fusion only in neuronal subtypes that exhibit activity-regulated myelination. Our results identify a novel "feedforward" mechanism whereby the process of myelination promotes the neuronal activity-regulated signal, vesicular fusion that, in turn, consolidates sheath growth along specific axons selected for myelination.
Collapse
Affiliation(s)
- Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Jill M Williamson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Megan E Madden
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew G Voas
- Department of Developmental Biology, Stanford University, Stanford, CA, USA; National Cancer Institute, Frederick, MD, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Multiple layers of spatial regulation coordinate axonal cargo transport. Curr Opin Neurobiol 2021; 69:241-246. [PMID: 34171618 DOI: 10.1016/j.conb.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/23/2022]
Abstract
Nerve axons are shaped similar to long electric wires to quickly transmit information from one end of the body to the other. To remain healthy and functional, axons depend on a wide range of cellular cargos to be transported from the neuronal cell body to its distal processes. Because of the extended distance, a sophisticated and well-organized trafficking network is required to move cargos up and down the axon. Besides motor proteins driving cargo transport, recent data revealed that subcellular membrane specializations, including the axon initial segment at the beginning of the axon and the membrane-associated periodic skeleton, which extends throughout the axonal length, are important spatial regulators of cargo traffic. In addition, tubulin modifications and microtubule-associated proteins present along the axonal cytoskeleton have been proposed to bias cargo movements. Here, we discuss the recent advances in understanding these multiple layers of regulatory mechanisms controlling axonal transport.
Collapse
|
8
|
Bekku Y, Salzer JL. Dual Color, Live Imaging of Vesicular Transport in Axons of Cultured Sensory Neurons. Bio Protoc 2021; 11:e4067. [PMID: 34263008 DOI: 10.21769/bioprotoc.4067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/02/2022] Open
Abstract
The function of neurons in afferent reception, integration, and generation of electrical activity relies on their strikingly polarized organization, characterized by distinct membrane domains. These domains have different compositions resulting from a combination of selective targeting and retention of membrane proteins. In neurons, most proteins are delivered from their site of synthesis in the soma to the axon via anterograde vesicular transport and undergo retrograde transport for redistribution and/or lysosomal degradation. A key question is whether proteins destined for the same domain are transported in separate vesicles for local assembly or whether these proteins are pre-assembled and co-transported in the same vesicles for delivery to their cognate domains. To assess the content of transport vesicles, one strategy relies on staining of sciatic nerves after ligation, which drives the accumulation of anterogradely and retrogradely transported vesicles on the proximal and distal side of the ligature, respectively. This approach may not permit confident assessment of the nature of the intracellular vesicles identified by staining, and analysis is limited to the availability of suitable antibodies. Here, we use dual color live imaging of proteins labeled with different fluorescent tags, visualizing anterograde and retrograde axonal transport of several proteins simultaneously. These proteins were expressed in rat dorsal root ganglion (DRG) neurons cultured alone or with Schwann cells under myelinating conditions to assess whether glial cells modify the patterns of axonal transport. Advantages of this protocol are the dynamic identification of transport vesicles and characterization of their content for various proteins that is not limited by available antibodies.
Collapse
Affiliation(s)
- Yoko Bekku
- Neuroscience Institute, New York University Langone Medical Center, New York, USA
| | - James L Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, USA
| |
Collapse
|
9
|
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease. Life (Basel) 2020; 11:life11010008. [PMID: 33374190 PMCID: PMC7824554 DOI: 10.3390/life11010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.
Collapse
|
10
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
11
|
Ghosh A, Malavasi EL, Sherman DL, Brophy PJ. Neurofascin and Kv7.3 are delivered to somatic and axon terminal surface membranes en route to the axon initial segment. eLife 2020; 9:60619. [PMID: 32903174 PMCID: PMC7511229 DOI: 10.7554/elife.60619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ion channel complexes promote action potential initiation at the mammalian axon initial segment (AIS), and modulation of AIS size by recruitment or loss of proteins can influence neuron excitability. Although endocytosis contributes to AIS turnover, how membrane proteins traffic to this proximal axonal domain is incompletely understood. Neurofascin186 (Nfasc186) has an essential role in stabilising the AIS complex to the proximal axon, and the AIS channel protein Kv7.3 regulates neuron excitability. Therefore, we have studied how these proteins reach the AIS. Vesicles transport Nfasc186 to the soma and axon terminal where they fuse with the neuronal plasma membrane. Nfasc186 is highly mobile after insertion in the axonal membrane and diffuses bidirectionally until immobilised at the AIS through its interaction with AnkyrinG. Kv7.3 is similarly recruited to the AIS. This study reveals how key proteins are delivered to the AIS and thereby how they may contribute to its functional plasticity.
Collapse
Affiliation(s)
- Aniket Ghosh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elise Lv Malavasi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Accumulation of Neurofascin at Nodes of Ranvier Is Regulated by a Paranodal Switch. J Neurosci 2020; 40:5709-5723. [PMID: 32554548 DOI: 10.1523/jneurosci.0830-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
The paranodal junctions flank mature nodes of Ranvier and provide a barrier between ion channels at the nodes and juxtaparanodes. These junctions also promote node assembly and maintenance by mechanisms that are poorly understood. Here, we examine their role in the accumulation of NF186, a key adhesion molecule of PNS and CNS nodes. We previously showed that NF186 is initially targeted/accumulates via its ectodomain to forming PNS (hemi)nodes by diffusion trapping, whereas it is later targeted to mature nodes by a transport-dependent mechanism mediated by its cytoplasmic segment. To address the role of the paranodes in this switch, we compared accumulation of NF186 ectodomain and cytoplasmic domain constructs in WT versus paranode defective (i.e., Caspr-null) mice. Both pathways are affected in the paranodal mutants. In the PNS of Caspr-null mice, diffusion trapping mediated by the NF186 ectodomain aberrantly persists into adulthood, whereas the cytoplasmic domain/transport-dependent targeting is impaired. In contrast, accumulation of NF186 at CNS nodes does not undergo a switch; it is predominantly targeted to both forming and mature CNS nodes via its cytoplasmic domain and requires intact paranodes. Fluorescence recovery after photobleaching analysis indicates that the paranodes provide a membrane diffusion barrier that normally precludes diffusion of NF186 to nodes. Linkage of paranodal proteins to the underlying cytoskeleton likely contributes to this diffusion barrier based on 4.1B and βII spectrin expression in Caspr-null mice. Together, these results implicate the paranodes as membrane diffusion barriers that regulate targeting to nodes and highlight differences in the assembly of PNS and CNS nodes.SIGNIFICANCE STATEMENT Nodes of Ranvier are essential for effective saltatory conduction along myelinated axons. A major question is how the various axonal proteins that comprise the multimeric nodal complex accumulate at this site. Here we examine how targeting of NF186, a key nodal adhesion molecule, is regulated by the flanking paranodal junctions. We show that the transition from diffusion-trapping to transport-dependent accumulation of NF186 requires the paranodal junctions. We also demonstrate that these junctions are a barrier to diffusion of axonal proteins into the node and highlight differences in PNS and CNS node assembly. These results provide new insights into the mechanism of node assembly and the pathophysiology of neurologic disorders in which impaired paranodal function contributes to clinical disability.
Collapse
|