1
|
Amatya B, Polzin JQM, Villar VAM, Yang J, Konkalmatt P, Wang X, Cadme RC, Xu P, Gildea JJ, Cuevas S, Armando I, Felder RA, Jose PA, Lee H. SNX19 Interacts with Caveolin-1 and Flotillin-1 to Regulate D 1R Endocytosis and Signaling. Biomedicines 2025; 13:481. [PMID: 40002894 PMCID: PMC11853350 DOI: 10.3390/biomedicines13020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Sorting nexin 19 (SNX19) is important in the localization and trafficking of the dopamine D1 receptor (D1R) to lipid raft microdomains. However, the interaction between SNX19 and the lipid raft components caveolin-1 or flotillin-1 and, in particular, their roles in the cellular endocytosis and cell membrane trafficking of the D1R have not been determined. Methods: Caveolin-1 and flotillin-1 motifs were analyzed by in silico analysis; colocalization was observed by confocal immunofluorescence microscopy; protein-protein interaction was determined by co-immunoprecipitation. Results: In silico analysis revealed the presence of putative caveolin-1 and flotillin-1 binding motifs within SNX19. In mouse and human renal proximal tubule cells (RPTCs), SNX19 was localized mainly in lipid rafts. In mouse RPTCs transfected with wild-type (WT) Snx19, fenoldopam (FEN), a D1-like receptor agonist, increased the colocalization of SNX19 with caveolin-1 and flotillin-1. FEN also increased the co-immunoprecipitation of SNX19 with caveolin-1 and flotillin-1, effects that were prevented by SCH39166, a D1-like receptor antagonist. The FEN-mediated increase in the residence of SNX19 in lipid rafts and the colocalization of the D1R with caveolin-1 and flotilin-1 were attenuated by the deletion of a caveolin-1 (YHTVNRRYREF) (ΔCav1) or a flotillin-1 (EEGPGTETETGLPVS) (ΔFlot1) binding motif. The FEN-mediated increase in intracellular cAMP production was also impaired by the deletion of either the flotillin-1 or caveolin-1 binding motif. Nocodazole, a microtubule depolymerization inhibitor, interfered with the FEN-mediated increase in the colocalization between SNX19 and D1R. Conclusion: SNX19 contains caveolin-1 and flotillin-1 binding motifs, which play an important role in D1R endocytosis and signaling.
Collapse
Affiliation(s)
- Bibhas Amatya
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacob Q. M. Polzin
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
| | - Van A. M. Villar
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
| | - Jiang Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Prasad Konkalmatt
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
| | - Xiaoyan Wang
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Raisha C. Cadme
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
| | - Peng Xu
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA; (P.X.); (J.J.G.); (R.A.F.)
| | - John J. Gildea
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA; (P.X.); (J.J.G.); (R.A.F.)
| | - Santiago Cuevas
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
- Physiopathology of the Inflammation and Oxidative Stress Laboratory, Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Palmar, Spain
| | - Ines Armando
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA; (P.X.); (J.J.G.); (R.A.F.)
| | - Pedro A. Jose
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
- Department of Pharmacology & Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Hewang Lee
- Division of Kidney Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (B.A.); (J.Q.M.P.); (V.A.M.V.); (P.K.); (X.W.); (R.C.C.); (S.C.); (I.A.); (P.A.J.)
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, HSF II, Baltimore, MD 21201, USA;
| |
Collapse
|
2
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Zadka Ł, Sochocka M, Hachiya N, Chojdak-Łukasiewicz J, Dzięgiel P, Piasecki E, Leszek J. Endocytosis and Alzheimer's disease. GeroScience 2024; 46:71-85. [PMID: 37646904 PMCID: PMC10828383 DOI: 10.1007/s11357-023-00923-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Naomi Hachiya
- Shonan Research Center, Central Glass Co., Ltd, Shonan Health Innovation Park 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland
| |
Collapse
|
5
|
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harb Perspect Biol 2023; 15:a041257. [PMID: 36123033 PMCID: PMC10071438 DOI: 10.1101/cshperspect.a041257] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Endoplasmic Reticulum (ER) is an endomembrane system that plays a multiplicity of roles in cell physiology and populates even the most distal cell compartments, including dendritic tips and axon terminals of neurons. Some of its functions are achieved by a cross talk with other intracellular membranous organelles and with the plasma membrane at membrane contacts sites (MCSs). As the ER synthesizes most membrane lipids, lipid exchanges mediated by lipid transfer proteins at MCSs are a particularly important aspect of this cross talk, which synergizes with the cross talk mediated by vesicular transport. Several mutations of genes that encode proteins localized at ER MCSs result in familial neurodegenerative diseases, emphasizing the importance of the normal lipid traffic within cells for a healthy brain. Here, we provide an overview of such diseases, with a specific focus on proteins that directly or indirectly impact lipid transport.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|