1
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2025; 60:749-761.e5. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
2
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
3
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Cera MR, Bastianello G, Purushothaman D, Andronache A, Ascione F, Robusto M, Fagà G, Pasi M, Meroni G, Li Q, Choudhary R, Varasi M, Foiani M, Mercurio C. A multiparametric screen uncovers FDA-approved small molecules that potentiate the nuclear mechano-dysfunctions in ATR-defective cells. Sci Rep 2024; 14:30786. [PMID: 39730498 DOI: 10.1038/s41598-024-80837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity. We carried out a multiparametric high-content screen to identify small molecules that affect nuclear envelope shape and to uncover novel players that could either ameliorate or further compromise the nuclear mechanical abnormalities of ATR-defective cells. The screen was performed in HeLa cells genetically depleted for ATR. Candidate hits were also tested in combination with the chemical inhibition of ATR by AZD6738, and their efficacy was further validated in the triple-negative breast cancer cell lines BT549 and HCC1937. We show that those compounds enhancing the abnormal nuclear shape of ATR-defective cells also synergize with AZD6738 to boost the expression of interferon-stimulated genes, highlighting the power of multiparametric screens to identify novel combined therapeutic interventions targeting nuclear mechanics for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Giulia Bastianello
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Divya Purushothaman
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | | | - Flora Ascione
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Robusto
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fagà
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Human Technopole, Milan, Italy
| | - Maurizio Pasi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Meroni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Recordati S.P.A, Milan, Italy
| | - Qingsen Li
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mario Varasi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR, Pavia, Italy.
- Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| | - Ciro Mercurio
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
6
|
Gelashvili Z, Shen Z, Ma Y, Jelcic M, Niethammer P. Perivascular Macrophages Convert Physical Wound Signals Into Rapid Vascular Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627538. [PMID: 39713421 PMCID: PMC11661168 DOI: 10.1101/2024.12.09.627538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Leukocytes detect distant wounds within seconds to minutes, which is essential for effective pathogen defense, tissue healing, and regeneration. Blood vessels must detect distant wounds just as rapidly to initiate local leukocyte extravasation, but the mechanism behind this immediate vascular response remains unclear. Using high-speed imaging of live zebrafish larvae, we investigated how blood vessels achieve rapid wound detection. We monitored two hallmark vascular responses: vessel dilation and serum exudation. Our experiments-including genetic, pharmacologic, and osmotic perturbations, along with chemogenetic leukocyte depletion-revealed that the cPla2 nuclear shape sensing pathway in perivascular macrophages converts a fast (~50 μm/s) osmotic wound signal into a vessel-permeabilizing, 5-lipoxygenase (Alox5a) derived lipid within seconds of injury. These findings demonstrate that perivascular macrophages act as physicochemical relays, bridging osmotic wound signals and vascular responses. By uncovering this novel type of communication, we provide new insights into the coordination of immune and vascular responses to injury.
Collapse
Affiliation(s)
- Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhouyang Shen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Oncology, The Bunting Blaustein Cancer Research Bldg, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 2128
| | - Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Jelcic
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Fate Therapeutics, Inc., San Diego, CA, 92131, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
8
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
9
|
Lima JT, Pereira AJ, Ferreira JG. The LINC complex ensures accurate centrosome positioning during prophase. Life Sci Alliance 2024; 7:e202302404. [PMID: 38228373 PMCID: PMC10791920 DOI: 10.26508/lsa.202302404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Accurate centrosome separation and positioning during early mitosis relies on force-generating mechanisms regulated by a combination of extracellular, cytoplasmic, and nuclear cues. The identity of the nuclear cues involved in this process remains largely unknown. Here, we investigate how the prophase nucleus contributes to centrosome positioning during the initial stages of mitosis, using a combination of cell micropatterning, high-resolution live-cell imaging, and quantitative 3D cellular reconstruction. We show that in untransformed RPE-1 cells, centrosome positioning is regulated by a nuclear signal, independently of external cues. This nuclear mechanism relies on the linker of nucleoskeleton and cytoskeleton complex that controls the timely loading of dynein on the nuclear envelope (NE), providing spatial cues for robust centrosome positioning on the shortest nuclear axis, before nuclear envelope permeabilization. Our results demonstrate how nuclear-cytoskeletal coupling maintains a robust centrosome positioning mechanism to ensure efficient mitotic spindle assembly.
Collapse
Affiliation(s)
- Joana T Lima
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina do Porto, Unidade de Biologia Experimental, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - António J Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina do Porto, Unidade de Biologia Experimental, Porto, Portugal
| |
Collapse
|
10
|
Kelley ME, Carlini L, Kornakov N, Aher A, Khodjakov A, Kapoor TM. Spastin regulates anaphase chromosome separation distance and microtubule-containing nuclear tunnels. Mol Biol Cell 2024; 35:ar48. [PMID: 38335450 PMCID: PMC11064660 DOI: 10.1091/mbc.e24-01-0031-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nuclear envelope reassembly during the final stages of each mitosis depends on disassembling spindle microtubules without disrupting chromosome separation. This process involves the transient recruitment of the ESCRT-III complex and spastin, a microtubule-severing AAA (ATPases associated with diverse cellular activities) mechanoenzyme, to late-anaphase chromosomes. However, dissecting mechanisms underlying these rapid processes, which can be completed within minutes, has been difficult. Here, we combine fast-acting chemical inhibitors with live-cell imaging and find that spindle microtubules, along with spastin activity, regulate the number and lifetimes of spastin foci at anaphase chromosomes. Unexpectedly, spastin inhibition impedes chromosome separation, but does not alter the anaphase localization dynamics of CHMP4B, an ESCRT-III protein, or increase γ-H2AX foci, a DNA damage marker. We show spastin inhibition increases the frequency of lamin-lined nuclear microtunnels that can include microtubules penetrating the nucleus. Our findings suggest failure to sever spindle microtubules impedes chromosome separation, yet reforming nuclear envelopes can topologically accommodate persistent microtubules ensuring nuclear DNA is not damaged or exposed to cytoplasm.
Collapse
Affiliation(s)
- Megan E. Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Nikolay Kornakov
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Amol Aher
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12237
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
11
|
Dantas M, Vareiro D, Ferreira JG. Dissecting the Mechanical Control of Mitotic Entry Using a Cell Confinement Setup. Bio Protoc 2024; 14:e4959. [PMID: 38841288 PMCID: PMC10958165 DOI: 10.21769/bioprotoc.4959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 06/07/2024] Open
Abstract
Proliferating cells need to cope with extensive cytoskeletal and nuclear remodeling as they prepare to divide. These events are tightly regulated by the nuclear translocation of the cyclin B1-CDK1 complex, that is partly dependent on nuclear tension. Standard experimental approaches do not allow the manipulation of forces acting on cells in a time-resolved manner. Here, we describe a protocol that enables dynamic mechanical manipulation of single cells with high spatial and temporal resolution and its application in the context of cell division. In addition, we also outline a method for the manipulation of substrate stiffness using polyacrylamide hydrogels. Finally, we describe a static cell confinement setup, which can be used to study the impact of prolonged mechanical stimulation in populations of cells. Key features • Protocol for microfabrication of confinement devices. • Single-cell dynamic confinement coupled with high-resolution microscopy. • Static cell confinement protocol that can be combined with super-resolution STED microscopy. • Analysis of the mechanical control of mitotic entry in a time-resolved manner.
Collapse
Affiliation(s)
- Margarida Dantas
- University Medical Center Utrecht, Center for
Molecular Medicine, Utrecht, The Netherlands
| | - Débora Vareiro
- Instituto de Investigação e
Inovação em Saúde (i3S), Universidade do Porto, Porto,
Portugal
| | - Jorge G. Ferreira
- Instituto de Investigação e
Inovação em Saúde (i3S), Universidade do Porto, Porto,
Portugal
- Dept. Biomedicina, Faculdade de Medicina da
Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Nguyen J, Wang L, Lei W, Hu Y, Gulati N, Chavez-Madero C, Ahn H, Ginsberg HJ, Krawetz R, Brandt M, Betz T, Gilbert PM. Culture substrate stiffness impacts human myoblast contractility-dependent proliferation and nuclear envelope wrinkling. J Cell Sci 2024; 137:jcs261666. [PMID: 38345101 PMCID: PMC11033523 DOI: 10.1242/jcs.261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lu Wang
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wen Lei
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Nitya Gulati
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolina Chavez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Howard J. Ginsberg
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthias Brandt
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University Münster, 48149 Münster, Germany
| | - Timo Betz
- Third Institute of Physics – Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Penney M. Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
13
|
Introini V, Kidiyoor GR, Porcella G, Cicuta P, Cosentino Lagomarsino M. Centripetal nuclear shape fluctuations associate with chromatin condensation in early prophase. Commun Biol 2023; 6:715. [PMID: 37438411 PMCID: PMC10338514 DOI: 10.1038/s42003-023-05074-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
The nucleus plays a central role in several key cellular processes, including chromosome organisation, DNA replication and gene transcription. Recent work suggests an association between nuclear mechanics and cell-cycle progression, but many aspects of this connection remain unexplored. Here, by monitoring nuclear shape fluctuations at different cell cycle stages, we uncover increasing inward fluctuations in late G2 and in early prophase, which are initially transient, but develop into instabilities when approaching the nuclear-envelope breakdown. We demonstrate that such deformations correlate with chromatin condensation by perturbing both the chromatin and the cytoskeletal structures. We propose that the contrasting forces between an extensile stress and centripetal pulling from chromatin condensation could mechanically link chromosome condensation with nuclear-envelope breakdown, two main nuclear processes occurring during mitosis.
Collapse
Affiliation(s)
- Viola Introini
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Gururaj Rao Kidiyoor
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Giancarlo Porcella
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marco Cosentino Lagomarsino
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy.
- Dipartimento di Fisica, Università degli Studi di Milano and I.N.F.N., Via Celoria 16, Milan, 20133, Italy.
| |
Collapse
|
14
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|