1
|
Szentgyörgyi V, Lueck LM, Overwijn D, Ritz D, Zoeller N, Schmidt A, Hondele M, Spang A, Bakhtiar S. Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis. J Cell Biol 2024; 223:e202401167. [PMID: 39325073 PMCID: PMC11449124 DOI: 10.1083/jcb.202401167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive. We show that LRBA, however, only slightly colocalizes with Rab11. Instead, LRBA is recruited by members of the small GTPase Arf protein family to the TGN and to Rab4+ endosomes, where it controls intracellular traffic. In patient-derived fibroblasts, loss of LRBA led to defects in the endosomal pathway promoting the accumulation of enlarged endolysosomes and lysosome secretion. Thus, LRBA appears to regulate flow through the endosomal system on Rab4+ endosomes. Our data strongly suggest functions of LRBA beyond CTLA-4 trafficking and provide a conceptual framework to develop new therapies for LRBA deficiency.
Collapse
Affiliation(s)
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nadja Zoeller
- Dermatology, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Shahrzad Bakhtiar
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Yap WS, Kim PK, Boutry M. Acutely Modifying Phosphatidylinositol Phosphates on Endolysosomes Using Chemically Inducible Dimerization Systems. Bio Protoc 2024; 14:e5077. [PMID: 39399594 PMCID: PMC11470379 DOI: 10.21769/bioprotoc.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Phosphoinositides are rare membrane lipids that mediate cell signaling and membrane dynamics. PI(4)P and PI(3)P are two major phosphoinositides crucial for endolysosomal functions and dynamics, making them the lipids of interest in many studies. The acute modulation of phosphoinositides at a given organelle membrane can reveal important insights into their cellular function. Indeed, the localized depletion of PI(4)P and PI(3)P is a viable tool to assess the importance of these phosphoinositides in various experimental conditions. Here, we describe a live imaging method to acutely deplete PI(4)P and PI(3)P on endolysosomes. The depletion assay utilizes the GAI-GID1 or the FRB-FKBP inducible dimerization system to target the catalytic domain of the PI(4)P phosphatase, Sac1, or the PI(3)P phosphatase domain of MTM1 to the endolysosome for localized depletion of these phosphoinositides. By using the fluorescently tagged biosensors, 2xP4M and PX, we can validate and monitor the depletion of PI(4)P and PI(3)P, respectively, on endolysosomes in real-time. We discuss a method for normalizing the fluorescence measurements to appropriate the relative amount of these phosphoinositides in the organellar membranes (endolysosomes), which is required for monitoring PI(4)P or PI(3)P levels during the acute depletion assay. Since the localization of the dimerization partners is specified by the membrane targeting signal, our protocol will be useful for studying the signaling and functions of phosphoinositides at any membrane. Key features • Acute depletion and real-time monitoring of PI(3)P and PI(4)P on the endolysosomal membrane using chemically inducible dimerization systems. • Modifiable and adaptable to modulate other phosphoinositides on different organellar membranes.
Collapse
Affiliation(s)
- Wei Sheng Yap
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter K. Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- College of Korean Medicine Kyung Hee University, Seoul, South Korea
| | - Maxime Boutry
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, Illkirch, France
| |
Collapse
|
3
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 PMCID: PMC11668303 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
4
|
Maib H, Adarska P, Hunton R, Vines JH, Strutt D, Bottanelli F, Murray DH. Recombinant biosensors for multiplex and super-resolution imaging of phosphoinositides. J Cell Biol 2024; 223:e202310095. [PMID: 38578646 PMCID: PMC10996583 DOI: 10.1083/jcb.202310095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Phosphoinositides are a small family of phospholipids that act as signaling hubs and key regulators of cellular function. Detecting their subcellular distribution is crucial to gain insights into membrane organization and is commonly done by the overexpression of biosensors. However, this leads to cellular perturbations and is challenging in systems that cannot be transfected. Here, we present a toolkit for the reliable, fast, multiplex, and super-resolution detection of phosphoinositides in fixed cells and tissue, based on recombinant biosensors with self-labeling SNAP tags. These are highly specific and reliably visualize the subcellular distributions of phosphoinositides across scales, from 2D or 3D cell culture to Drosophila tissue. Further, these probes enable super-resolution approaches, and using STED microscopy, we reveal the nanoscale organization of PI(3)P on endosomes and PI(4)P on the Golgi. Finally, multiplex staining reveals an unexpected presence of PI(3,5)P2-positive membranes in swollen lysosomes following PIKfyve inhibition. This approach enables the versatile, high-resolution visualization of multiple phosphoinositide species in an unprecedented manner.
Collapse
Affiliation(s)
- Hannes Maib
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Petia Adarska
- Institut für Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Robert Hunton
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - James H. Vines
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - David H. Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Sava I, Davis LJ, Gray SR, Bright NA, Luzio JP. Reversible assembly and disassembly of V-ATPase during the lysosome regeneration cycle. Mol Biol Cell 2024; 35:ar63. [PMID: 38446621 PMCID: PMC11151095 DOI: 10.1091/mbc.e23-08-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Regulation of the luminal pH of late endocytic compartments in continuously fed mammalian cells is poorly understood. Using normal rat kidney fibroblasts, we investigated the reversible assembly/disassembly of the proton pumping V-ATPase when endolysosomes are formed by kissing and fusion of late endosomes with lysosomes and during the subsequent reformation of lysosomes. We took advantage of previous work showing that sucrosomes formed by the uptake of sucrose are swollen endolysosomes from which lysosomes are reformed after uptake of invertase. Using confocal microscopy and subcellular fractionation of NRK cells stably expressing fluorescently tagged proteins, we found net recruitment of the V1 subcomplex during sucrosome formation and loss during lysosome reformation, with a similar time course to RAB7a loss. Addition of invertase did not alter mTORC1 signalling, suggesting that the regulation of reversible V-ATPase assembly/disassembly in continuously fed cells differs from that in cells subject to amino acid depletion/refeeding. Using live cell microscopy, we demonstrated recruitment of a fluorescently tagged V1 subunit during endolysosome formation and a dynamic equilibrium and rapid exchange between the cytosolic and membrane bound pools of this subunit. We conclude that reversible V-ATPase assembly/disassembly plays a key role in regulating endolysosomal/lysosomal pH in continuously fed cells.
Collapse
Affiliation(s)
- Ioana Sava
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luther J. Davis
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Sally R. Gray
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nicholas A. Bright
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - J. Paul Luzio
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
6
|
Li L, Liu X, Yang S, Li M, Wu Y, Hu S, Wang W, Jiang A, Zhang Q, Zhang J, Ma X, Hu J, Zhao Q, Liu Y, Li D, Hu J, Yang C, Feng W, Wang X. The HEAT repeat protein HPO-27 is a lysosome fission factor. Nature 2024; 628:630-638. [PMID: 38538795 DOI: 10.1038/s41586-024-07249-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.
Collapse
Affiliation(s)
- Letao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xilu Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meijiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Yanwei Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Siqi Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junbing Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junyan Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiaohong Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yubing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Southwest United Graduate School, Kunming, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Ebner M, Puchkov D, López-Ortega O, Muthukottiappan P, Su Y, Schmied C, Zillmann S, Nikonenko I, Koddebusch J, Dornan GL, Lucht MT, Koka V, Jang W, Koch PA, Wallroth A, Lehmann M, Brügger B, Pende M, Winter D, Haucke V. Nutrient-regulated control of lysosome function by signaling lipid conversion. Cell 2023; 186:5328-5346.e26. [PMID: 37883971 DOI: 10.1016/j.cell.2023.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
Collapse
Affiliation(s)
- Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Yanwei Su
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Silke Zillmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Iryna Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jochen Koddebusch
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Max T Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vonda Koka
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Alexander Wallroth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mario Pende
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|