1
|
Gao HC, Xu F, Cheng X, Bi C, Zheng Y, Li Y, Chen T, Li Y, Chubykin AA, Huang F. Interferometric Ultra-High Resolution 3D Imaging through Brain Sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636258. [PMID: 39975253 PMCID: PMC11838448 DOI: 10.1101/2025.02.03.636258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Single-molecule super-resolution microscopy allows pin-pointing individual molecular positions in cells with nanometer precision. However, achieving molecular resolution through tissues is often difficult because of optical scattering and aberrations. We introduced 4Pi single-molecule nanoscopy for brain with in-situ point spread function retrieval through opaque tissue (4Pi-BRAINSPOT), integrating 4Pi single-molecule switching nanoscopy with dynamic in-situ coherent PSF modeling, single-molecule compatible tissue clearing, light-sheet illumination, and a novel quantitative analysis pipeline utilizing the highly accurate 3D molecular coordinates. This approach enables the quantification of protein distribution with sub-15-nm resolution in all three dimensions in complex tissue specimens. We demonstrated 4Pi-BRAINSPOT's capacities in revealing the molecular arrangements in various sub-cellular organelles and resolved the membrane morphology of individual dendritic spines through 50-μm transgenic mouse brain slices. This ultra-high-resolution approach allows us to decipher nanoscale organelle architecture and molecular distribution in both isolated cells and native tissue environments with precision down to a few nanometers.
Collapse
Affiliation(s)
- Hao-Cheng Gao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xi Cheng
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Cheng Bi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yue Zheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yilun Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tailong Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | | | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Wu TJ, Teng M, Jing X, Pritchard KA, Day BW, Naylor S, Teng RJ. Endoplasmic Reticulum Stress in Bronchopulmonary Dysplasia: Contributor or Consequence? Cells 2024; 13:1774. [PMID: 39513884 PMCID: PMC11544778 DOI: 10.3390/cells13211774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of prematurity. Oxidative stress (OS) and inflammation are the major contributors to BPD. Despite aggressive treatments, BPD prevalence remains unchanged, which underscores the urgent need to explore more potential therapies. The endoplasmic reticulum (ER) plays crucial roles in surfactant and protein synthesis, assisting mitochondrial function, and maintaining metabolic homeostasis. Under OS, disturbed metabolism and protein folding transform the ER structure to refold proteins and help degrade non-essential proteins to resume cell homeostasis. When OS becomes excessive, the endogenous chaperone will leave the three ER stress sensors to allow subsequent changes, including cell death and senescence, impairing the growth potential of organs. The contributing role of ER stress in BPD is confirmed by reproducing the BPD phenotype in rat pups by ER stress inducers. Although chemical chaperones attenuate BPD, ER stress is still associated with cellular senescence. N-acetyl-lysyltyrosylcysteine amide (KYC) is a myeloperoxidase inhibitor that attenuates ER stress and senescence as a systems pharmacology agent. In this review, we describe the role of ER stress in BPD and discuss the therapeutic potentials of chemical chaperones and KYC, highlighting their promising role in future therapeutic interventions.
Collapse
Affiliation(s)
- Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr., Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (M.T.); (X.J.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
3
|
Guerrier S, Patterson M, Crofton K, Tucker M, Walker S. Dynamic Localization of Endoplasmic Reticulum during Tetrahymena Conjugation. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001300. [PMID: 39410966 PMCID: PMC11474315 DOI: 10.17912/micropub.biology.001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Changes in lipid composition at membrane fusion sites in mating Tetrahymena are thought to involve the endoplasmic reticulum (ER), but its localization to these sites has not been observed. Here we show ER distribution during Tetrahymena mating using TtRET1-GFP and GFP-KDEL. We find that both markers localize to perinuclear membranes and tubular structures that connect perinuclear membrane to plasma membrane at fusion sites. Interestingly, both markers disappear from parental macronuclei after emergence of zygotic macronuclei. These similarities in localization of established ER marker, GFP-KDEL, and TtRET1-GFP reveal TtRET1-GFP as a useful new live cell marker for the ER in Tetrahymena.
Collapse
Affiliation(s)
- Sabrice Guerrier
- Department of Biology, Rollins College, Winter Park, Florida, United States
| | - Michael Patterson
- Department of Chemistry and Biochemistry, Millsaps College, Jackson, Mississippi, United States
| | - Kaitlin Crofton
- Department of Biology, Rollins College, Winter Park, Florida, United States
| | - Michael Tucker
- Department of Biology, Rollins College, Winter Park, Florida, United States
| | - Shyhiem Walker
- Department of Biology, Rollins College, Winter Park, Florida, United States
| |
Collapse
|
4
|
Martin-Solana E, Carter SD, Donahue EK, Ning J, Glausier JR, Preisegger MA, Eisenman L, Joseph PN, Bouchet-Marquis C, Wu K, Mobini CL, Frantz AN, Puig S, Hampton CM, Kabbani N, Jensen GJ, Watkins SC, Deisseroth K, Fenno LE, Gold MS, Wills ZP, Burkewitz K, Das S, Freyberg Z. Ribosome-Associated Vesicles promote activity-dependent local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598007. [PMID: 38895376 PMCID: PMC11185778 DOI: 10.1101/2024.06.07.598007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Local protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes. Stimulation via chemically-induced long-term potentiation causes RAV accumulation in distal sites to drive local translation. We also demonstrate activity-driven changes in RAV generation and dynamics in vivo, identifying tubular ER shaping proteins in RAV biogenesis. Together, our work identifies a mechanism for ribosomal delivery to distal sites in neurons to promote activity-dependent local translation.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen D. Carter
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Eric K.F. Donahue
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Leanna Eisenman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul N. Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ken Wu
- Materials and Structural Analysis, Thermo Fisher Scientific, Hillsboro, OR, USA
| | | | - Amber N. Frantz
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Puig
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cheri M. Hampton
- UES, Inc., Dayton, OH, USA
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, USA
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Grant J. Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Lief E. Fenno
- Departments of Psychiatry and Neuroscience, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Sulagna Das
- Department of Cell Biology, Albert Einstein College of Medicine, NY
- Department of Cell Biology, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Parolek J, Burd CG. Bridge-like lipid transfer protein family member 2 suppresses ciliogenesis. Mol Biol Cell 2024; 35:br11. [PMID: 38536441 PMCID: PMC11151097 DOI: 10.1091/mbc.e24-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Bridge-like lipid transfer protein family member 2 (BLTP2) is an evolutionary conserved protein with unknown function(s). The absence of BLTP2 in Drosophila melanogaster results in impaired cellular secretion and larval death, while in mice (Mus musculus), it causes preweaning lethality. Structural predictions propose that BLTP2 belongs to the repeating β-groove domain-containing (also called the VPS13) protein family, forming a long tube with a hydrophobic core, suggesting that it operates as a lipid transfer protein (LTP). We establish BLTP2 as a negative regulator of ciliogenesis in RPE-1 cells based on a strong genetic interaction with WDR44, a gene that also suppresses ciliogenesis. Like WDR44, BLTP2 localizes to membrane contact sites involving the endoplasmic reticulum and the tubular endosome network in HeLa cells and that BLTP2 depletion enhanced ciliogenesis in RPE-1 cells grown in serum-containing medium, a condition where ciliogenesis is normally suppressed. This study establishes human BLTP2 as a putative LTP acting between tubular endosomes and ER that regulates primary cilium biogenesis.
Collapse
Affiliation(s)
- Jan Parolek
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|