1
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
New insights into TCR β-selection. Trends Immunol 2021; 42:735-750. [PMID: 34261578 DOI: 10.1016/j.it.2021.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) β-selection (herein referred to as β-selection) is a pivotal checkpoint in mammalian T cell development when immature CD4-CD8- T-cells (thymocytes) express pre-TCR following successful Tcrb gene rearrangement. At this stage, αβ T cell lineage commitment and allelic exclusion to restrict one β-chain per cell take place and thymocytes undergo a proliferative burst. β-selection is known to be crucially dependent upon synchronized Notch and pre-TCR signaling; however, other necessary inputs have been identified over the past decade, expanding our knowledge and understanding of the β-selection process. In this review, we discuss recent mechanistic findings that have enabled a more detailed decoding of the molecular dynamics of the β-selection checkpoint and have helped to elucidate its role in early T cell development.
Collapse
|
3
|
Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R, Schilbach K. Human Peripheral CD4(+) Vδ1(+) γδT Cells Can Develop into αβT Cells. Front Immunol 2014; 5:645. [PMID: 25709606 PMCID: PMC4329445 DOI: 10.3389/fimmu.2014.00645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
The lifelong generation of αβT cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic naïve and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of naïve T cells, and recent research suggests that also αβT-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. γδT cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. γδT cells that express the Vδ1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral Vδ1+ γδT-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional αβT cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the Vδ1+ γδTCR into the αβTCR as a consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered.
Collapse
Affiliation(s)
- Hendrik Ziegler
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Christian Welker
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Marco Sterk
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Jan Haarer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Karin Schilbach
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| |
Collapse
|
4
|
Liu T, Huo X, Liu G, Chopra AK. WITHDRAWN: The majority of T cells, including Treg cells, are developed from CD4 -CD8 -T progenitor cells without the involvement of the CD4 +CD8 + stage in the thymus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013:S0145-305X(13)00003-7. [PMID: 23333732 DOI: 10.1016/j.dci.2012.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/05/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Tie Liu
- The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Analytical Cytology Laboratory and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| | | | | | | |
Collapse
|
5
|
Furmanski AL, Bartok I, Chai JG, Singh Y, Ferreira C, Scott D, Holland SJ, Bourdeaux C, Crompton T, Dyson J. Peptide-specific, TCR-alpha-driven, coreceptor-independent negative selection in TCR alpha-chain transgenic mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:650-7. [PMID: 19995903 DOI: 10.4049/jimmunol.0902291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As thymocytes differentiate, Ag sensitivity declines, with immature CD4-CD8- double-negative (DN) cells being most susceptible to TCR signaling events. We show that expression of alphabetaTCR from the DN3 stage lowers the threshold for activation, allowing recognition of MHC peptides independently of the TCR beta-chain and without either T cell coreceptor. The MHC class I-restricted C6 TCR recognizes the Y-chromosome-derived Ag HYK(k)Smcy. Positive selection in C6 alphabetaTCR females is skewed to the CD8 compartment, whereas transgenic male mice exhibit early clonal deletion of thymocytes. We investigated the effect of the HYK(k)Smcy complex on developing thymocytes expressing the C6 TCR alpha-chain on a TCR-alpha(-/-) background. On the original selecting haplotype, the skew to the CD8 lineage is preserved. This is MHC dependent, as the normal bias to the CD4 subset is seen on an H2b background. In male H2k C6 alpha-only mice, the presence of the HYK(k)Smcy complex leads to a substantial deletion of thymocytes from the DN subset. This phenotype is replicated in H2k C6 alpha-only female mice expressing an Smcy transgene. Deletion is not dependent on the beta variable segment of the C6 TCR or on a restricted TCR-beta repertoire. In contrast, binding of HYK(k)Smcy and Ag-specific activation of mature CD8+ T cells is strictly dependent on the original C6 beta-chain. These data demonstrate that, in comparison with mature T cells, alphabetaTCR+ immature thymocytes can recognize and transduce signals in response to specific MHC-peptide complexes with relaxed binding requirements.
Collapse
Affiliation(s)
- Anna L Furmanski
- Department of Immunology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Croxford AL, Akilli-Ozturk O, Rieux-Laucat F, Förster I, Waisman A, Buch T. MHC-restricted T cell receptor signaling is required for alpha beta TCR replacement of the pre T cell receptor. Eur J Immunol 2008; 38:391-9. [PMID: 18203137 DOI: 10.1002/eji.200737054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A developmental block is imposed on CD25(+)CD44(-) thymocytes at the beta-selection checkpoint in the absence of the pre T cell receptor (preTCR) alpha-chain, pTalpha. Early surface expression of a transgenic alphabeta TCR has been shown to partially circumvent this block, such that thymocytes progress to the CD4(+)CD8(+) double-positive stage. We wanted to analyze whether a restricting MHC element is required for alphabeta TCR-expressing double-negative (DN) thymocytes to overcome the developmental block in pTalpha-deficient animals. We used the HY-I knock-in model that endows thymocytes with alphabeta TCR expression in the DN compartment but has the advantage of physiological expression levels, in contrast to conventional TCR transgenes. On a pTalpha-deficient background, this HY-I TCR transgene 'rescued' CD25(+)CD44(-) thymocytes from apoptosis and enabled progression to later differentiation stages. On a non-selecting MHC background, however, pTalpha-deficient HY-I mice presented a pronounced reduction in numbers of splenocytes and thymocytes when compared to animals of selecting MHC genotype, showing that MHC restriction is necessary to drive HY-TCR-mediated rescue of pTalpha-deficient thymocytes.
Collapse
MESH Headings
- Animals
- Female
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-Y Antigen/genetics
- H-Y Antigen/immunology
- Histocompatibility Antigen H-2D
- Lymphopoiesis/genetics
- Lymphopoiesis/immunology
- Male
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
|
7
|
Abstract
Rap1 (Ras-proximity 1), a member of the Ras family of small guanine triphosphatases (GTPases), is activated by diverse extracellular stimuli. While Rap1 has been discovered originally as a potential Ras antagonist, accumulating evidence indicates that Rap1 per se mediates unique signals and exerts biological functions distinctly different from Ras. Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types. Recent studies (including gene-targeting analysis) have uncovered that the Rap1 signal is integrated crucially and unpredictably in the diverse aspects of comprehensive biological systems. This review summarizes the role of the Rap1 signal in developments and functions of the immune and hematopoietic systems as well as in malignancy. Importantly, Rap1 activation is tightly regulated in tissue cells, and dysregulations of the Rap1 signal in specific tissues result in certain disorders, including myeloproliferative disorders and leukemia, platelet dysfunction with defective hemostasis, leukocyte adhesion-deficiency syndrome, lupus-like systemic autoimmune disease, and T cell anergy. Many of these disorders resemble human diseases, and the Rap1 signal with its regulators may provide rational molecular targets for controlling certain human diseases including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
8
|
Ferrero I, Mancini SJC, Grosjean F, Wilson A, Otten L, MacDonald HR. TCRgamma silencing during alphabeta T cell development depends upon pre-TCR-induced proliferation. THE JOURNAL OF IMMUNOLOGY 2006; 177:6038-43. [PMID: 17056529 DOI: 10.4049/jimmunol.177.9.6038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymus development, immature T cells become committed to two distinct lineages based upon expression of alphabeta or gammadelta TCR. In the alphabeta lineage, developing thymocytes progressively extinguish transcription of the TCRgamma genes by a poorly understood process known as gamma silencing. We show that alphabeta lineage thymocytes in mice lacking a functional pre-TCR undergo limited proliferation and fail to silence TCRgamma genes during development. Stimulation of pre-TCR-deficient immature thymocytes with anti-CD3 Abs does not directly down-regulate TCRgamma transcription but restores TCRgamma silencing following proliferation. Collectively our data reveal an important role for pre-TCR induced proliferation in activating the TCRgamma silencer in alphabeta lineage thymocytes, a process that may reinforce alphabeta or gammadelta lineage commitment.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- CD3 Complex/immunology
- Cell Lineage/genetics
- Cell Proliferation
- Gene Silencing
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/agonists
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Silencer Elements, Transcriptional/genetics
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/growth & development
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Isabel Ferrero
- Ludwig Institute for Cancer Research-Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
How equipotent cells develop into complex tissues containing many diverse cell types is still a mystery. However, evidence is accumulating from different tissue systems in multiple organisms that many of the specific receptor families known to regulate cell fate decisions target conserved signaling pathways. A mechanism for preserving specificity in the cellular response that has emerged from these studies is one in which quantitative differences in receptor signaling regulate the cell fate decision. A signal strength model has recently gained support as a means to explain alphabeta/gammadelta lineage commitment. In this review, we compare the alphabeta/gammadelta fate decision with other cell fate decisions that occur outside of the lymphoid system to attain a better picture of the quantitative signaling mechanism for cell fate specification.
Collapse
Affiliation(s)
- Sandra M Hayes
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
10
|
Maillard I, Tu L, Sambandam A, Yashiro-Ohtani Y, Millholland J, Keeshan K, Shestova O, Xu L, Bhandoola A, Pear WS. The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. ACTA ACUST UNITED AC 2006; 203:2239-45. [PMID: 16966428 PMCID: PMC2118105 DOI: 10.1084/jem.20061020] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic inactivation of Notch signaling in CD4(-)CD8(-) double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4(+)CD8(+) double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein-tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRbeta expression. DNMAML attenuated the pre-TCR-associated increase in cell size and CD27 expression. TCRbeta or TCRalphabeta transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML(-) or DNMAML(+) DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML(+) DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the beta-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J-MAML complex.
Collapse
Affiliation(s)
- Ivan Maillard
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|