1
|
Wong DR, Magaki SD, Vinters HV, Yong WH, Monuki ES, Williams CK, Martini AC, DeCarli C, Khacherian C, Graff JP, Dugger BN, Keiser MJ. Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels. Commun Biol 2023; 6:668. [PMID: 37355729 PMCID: PMC10290693 DOI: 10.1038/s42003-023-05031-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathy (CAA). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes. We evaluated the detector on a new manually-annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, and four human experts. The detector matched the cohort of neuropathology experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality predictions that approximately correlated with gold-standard human CERAD-like WSI scoring (p = 0.07 ± 0.10). The openly-available model can quickly score WSIs in minutes without a GPU on a standard workstation.
Collapse
Affiliation(s)
- Daniel R Wong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - William H Yong
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Christopher K Williams
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alessandra C Martini
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Charles DeCarli
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA, 95817, USA
| | - Chris Khacherian
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - John P Graff
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Michael J Keiser
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Suchy-Dicey A, Su Y, Buchwald DS, Manson SM, Reiman EM. Volume atrophy in medial temporal cortex and verbal memory scores in American Indians: Data from the Strong Heart Study. Alzheimers Dement 2023; 19:2298-2306. [PMID: 36453775 PMCID: PMC10232670 DOI: 10.1002/alz.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Distinguishing Alzheimer's disease (AD) patient subgroups may optimize positive clinical outcomes. Cortical atrophy is correlated with memory deficits, but these associations are understudied in American Indians. METHODS We collected imaging and cognition data in the Strong Heart Study (SHS), a cohort of 11 tribes across three regions. We processed 1.5T MRI using FreeSurfer and iterative principal component analysis. Linear mixed models estimated volumetric associations with diabetes. RESULTS Over mean 7 years follow-up (N = 818 age 65-89 years), overall volume loss was 0.5% per year. Significant losses associated with diabetes were especially strong in the right hemisphere. Annualized hippocampal, parahippocampal, entorhinal atrophy were worse for men, older age, diabetes, hypertension, stroke; and associated with both encoding and retrieval memory losses. DISCUSSION Our findings suggest that diabetes is an important risk factor in American Indians for cortical atrophy and memory loss. Future research should examine opportunities for primary prevention in this underserved population.
Collapse
Affiliation(s)
- Astrid Suchy-Dicey
- Elson S Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
| | - Dedra S Buchwald
- Elson S Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Spero M Manson
- Colorado School of Public Health, University of Colorado Anschutz, Aurora, Colorado, USA
| | | |
Collapse
|
3
|
Olszewska DA, Lang AE. The definition of precision medicine in neurodegenerative disorders and the one disease-many diseases tension. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:3-20. [PMID: 36796946 DOI: 10.1016/b978-0-323-85538-9.00005-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Precision medicine is a patient-centered approach that aims to translate new knowledge to optimize the type and timing of interventions for the greatest benefit to individual patients. There is considerable interest in applying this approach to treatments designed to slow or halt the progression of neurodegenerative diseases. Indeed, effective disease-modifying treatment (DMT) remains the greatest unmet therapeutic need in this field. In contrast to the enormous progress in oncology, precision medicine in the field of neurodegeneration faces multiple challenges. These are related to major limitations in our understanding of many aspects of the diseases. A critical barrier to advances in this field is the question of whether the common sporadic neurodegenerative diseases (of the elderly) are single uniform disorders (particularly related to their pathogenesis) or whether they represent a collection of related but still very distinct disease states. In this chapter, we briefly touch on lessons from other fields of medicine that might be applied to the development of precision medicine for DMT in neurodegenerative diseases. We discuss why DMT trials may have failed to date, and particularly the importance of appreciating the multifaceted nature of disease heterogeneity and how this has and will impact on these efforts. We conclude with comments on how we can move from this complex disease heterogeneity to the successful application of precision medicine principles in DMT for neurodegenerative diseases.
Collapse
Affiliation(s)
- Diana A Olszewska
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Anthony E Lang
- Department of Neurology, Division of Movement Disorders, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
4
|
Azar J, Salama M, Chidambaram SB, Al‐Balushi B, Essa MM, Qoronfleh MW. Precision health in Alzheimer disease: Risk assessment‐based strategies. PRECISION MEDICAL SCIENCES 2021. [DOI: 10.1002/prm2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jihan Azar
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
- Faculty of Medicine Mansoura University Mansoura Egypt
| | - Saravana Babu Chidambaram
- Department of Pharmacology JSS College of Pharmacy, JSS Academy of Higher Education & Research Mysuru India
| | - Buthaina Al‐Balushi
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
- Ageing and Dementia Research Group Sultan Qaboos University Muscat Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI) Research & Policy Division Ypsilanti Michigan USA
- 21 Health Street, Consulting Services London UK
| |
Collapse
|
5
|
Strianese O, Rizzo F, Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel) 2020; 11:E747. [PMID: 32640513 PMCID: PMC7397223 DOI: 10.3390/genes11070747] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets. Effective primary prevention could represent a promising route. To this end, precision, together with personalized medicine, are useful instruments in order to investigate pathological processes before the appearance of clinical symptoms and to guide physicians to choose a targeted therapy to manage the patient. Cardiovascular and neurodegenerative diseases represent suitable models for taking full advantage of precision medicine technologies applied to all stages of disease development. The availability of high technology incorporating artificial intelligence and advancement progress made in the field of biomedical research have been substantial to understand how genes, epigenetic modifications, aging, nutrition, drugs, microbiome and other environmental factors can impact health and chronic disorders. The aim of the present review is to address how precision and personalized medicine can bring greater clarity to the clinical and biological complexity of these types of disorders associated with high mortality, involving tremendous health care costs, by describing in detail the methods that can be applied. This might offer precious tools for preventive strategies and possible clues on the evolution of the disease and could help in predicting morbidity, mortality and detecting chronic disease indicators much earlier in the disease course. This, of course, will have a major effect on both improving the quality of care and quality of life of the patients and reducing time efforts and healthcare costs.
Collapse
Affiliation(s)
- Oriana Strianese
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Carmine Del Giudice
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
| | - Paola Tesorio
- Unit of Cardiology, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy;
| | - Maria Rosaria Rusciano
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| |
Collapse
|
6
|
Mock C, Teylan M, Beecham G, Besser L, Cairns NJ, Crary JF, Katsumata Y, Nelson PT, Kukull W. The Utility of the National Alzheimer's Coordinating Center's Database for the Rapid Assessment of Evolving Neuropathologic Conditions. Alzheimer Dis Assoc Disord 2020; 34:105-111. [PMID: 32304374 PMCID: PMC7242145 DOI: 10.1097/wad.0000000000000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of dementia research is rapidly evolving, especially with regards to our understanding of the diversity of neuropathologic changes that underlie cognitive decline. Definitions and criteria for known conditions are being periodically revised and refined, and new findings are being made about neuropathologic features associated with dementia status. The database maintained by the National Alzheimer's Coordinating Center (NACC) offer researchers a robust, rapid, and statistically well-powered method to evaluate the implications of newly identified neuropathologic conditions with regards to comorbidities, demographic associations, cognitive status, neuropsychologic tests, radiographic findings, and genetics. NACC data derive from dozens of excellent US Alzheimer disease research centers, which collectively follow thousands of research volunteers longitudinally. Many of the research participants are autopsied using state-of-the-art methods. In this article, we describe the NACC database and give examples of its use in evaluating recently revised neuropathologic diagnoses, including primary age-related tauopathy (PART), limbic predominant age-related TDP-43 encephalopathy (LATE), and the preclinical stage of Alzheimer disease neuropathologic change, based on the National Institute on Aging-Alzheimer's Association consensus guidelines. The dementia research community is encouraged to make use of this readily available database as new neuropathologic changes are recognized and defined in this rapidly evolving field.
Collapse
Affiliation(s)
- Charles Mock
- National Alzheimer’s Coordinating Center, University of Washington, WA
| | - Merilee Teylan
- National Alzheimer’s Coordinating Center, University of Washington, WA
| | - Gary Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL
| | | | - Nigel J. Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John F. Crary
- Neuropathology Brain Bank & Research Core, Departments of Pathology & Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Walter Kukull
- National Alzheimer’s Coordinating Center, University of Washington, WA
| |
Collapse
|
7
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 844] [Impact Index Per Article: 140.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
8
|
Wang ZT, Tan CC, Tan L, Yu JT. Systems biology and gene networks in Alzheimer’s disease. Neurosci Biobehav Rev 2019; 96:31-44. [PMID: 30465785 DOI: 10.1016/j.neubiorev.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/25/2022]
|
9
|
Hu Y, Pan J, Xin Y, Mi X, Wang J, Gao Q, Luo H. Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. Front Aging Neurosci 2018; 10:259. [PMID: 30210331 PMCID: PMC6119720 DOI: 10.3389/fnagi.2018.00259] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 were identified and characterized by high connectivity, module membership, or gene significance in the blue module. Furthermore, these genes were validated in mice of different ages. Mechanically, the potential regulators of blue module were investigated. These findings highlight an important role of the blue module and its affiliated genes in the control of normal brain aging, which may lead to potential therapeutic interventions for brain aging by targeting the hub genes.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| | - Junping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yirong Xin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangnan Mi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiahui Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BackgroundProtein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised.Design and methodsThe study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes.ResultsThe methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs.ConclusionsThe limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics.Trial registrationCurrent Controlled Trials ISRCTN74815110, UKCRN ID 9954 and UKCRN ID 11930.FundingThis project was funded by the NIHR Programme Grants for Applied Research programme and will be published in full inProgramme Grants for Applied Research; Vol. 6, No. 3. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter J Selby
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - William Rosenberg
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christopher McCabe
- Department of Emergency Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Julie Parkes
- Primary Care and Population Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | | | - Maureen Twiddy
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Tilly Hale
- LIVErNORTH Liver Patient Support, Newcastle upon Tyne, UK
| | - Jacqueline Dinnes
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Jones
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | | | - Vicky Napp
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Alice Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sudeep Tanwar
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Naveen S Vasudev
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sue Bell
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Neil Corrigan
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Heudtlass
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nick Hornigold
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Claire Hulme
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carys Lippiatt
- Department of Specialist Laboratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Roberta Longo
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Matthew Potton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sheryl Sim
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sebastian Trainor
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Neuberger
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul Richardson
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - John Christie
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Neil Sheerin
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William McKane
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Gibbs
- Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Naeem Soomro
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Grant D Stewart
- NHS Lothian, Edinburgh, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| | - David Hrouda
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
11
|
Chapman BP, Benedict RHB, Lin F, Roy S, Porteinsson A, Szigeti K, Federoff H, Mapstone M. Apolipoprotein E genotype impact on memory and attention in older persons: the moderating role of personality phenotype. Int J Geriatr Psychiatry 2018; 33:332-339. [PMID: 28612377 DOI: 10.1002/gps.4748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine if phenotypic personality traits modify the association of Apolipoprotein E (APOE) genotypes with different domains of cognitive function. DESIGN Cross-sectional. METHODS 172 non-demented older adults were administered the NEO-Five Factor Inventory (NEO-FFI), a battery of neuropsychological tests assessing memory, attention, executive function, language, and visuospatial ability, and underwent APOE genotyping. Multivariate (multiple-dependent variable) regression models predicting cognitive domains tested APOE interactions with personality traits, adjusting for age, sex, and education. RESULTS The APOE ε4 allele showed small to modest main effects on memory and executive function (1/3 SD deficits for carriers, p < .05), with ε2 status evidencing minimal and non-significant benefit. Neuroticism interacted with both ε2 and ε4 alleles in associations with attention scores (p = .001), with ε2 benefits and ε4 deficits being marked at high Neuroticism (Mean [M] covariate-adjusted Z-score = .39 for ε2, -.47 for ε4). The association of ε4 with memory was moderated by Conscientiousness (p < .001), such that ε4 memory deficits were apparent at low Conscientiousness (M = -.56), but absent at high levels of Conscientiousness. Weaker patterns (p < .05) also suggested ε4-related detriments in executive function only at lower Conscientiousness, and ε2 memory benefits only at higher Openness. CONCLUSIONS Conscientiousness and Neuroticism moderate APOE associations with memory and executive function. As such, they may be useful phenotypic markers in refining the prognostic significance of this polymorphism. Effect-modifying personality traits also provide clues about behavioral and psychological factors that influence the cognitive impact of APOE. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Benjamin P Chapman
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry
| | - Ralph H B Benedict
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| | - Feng Lin
- School of Nursing and Departments of Psychiatry and Brain and Cognitive Sciences, University of Rochester Medical Center
| | - Shumita Roy
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| | - Antoine Porteinsson
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry.,Department of Neurology, University of Rochester School of Medicine and Dentistry
| | - Kinga Szigeti
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| | - Howard Federoff
- Department of Neurology, University of Rochester School of Medicine and Dentistry
| | - Mark Mapstone
- Irvine School of Medicine, Department of Neurology, University of California
| |
Collapse
|
12
|
Castrillo JI, Lista S, Hampel H, Ritchie CW. Systems Biology Methods for Alzheimer’s Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods Mol Biol 2018; 1750:31-66. [PMID: 29512064 DOI: 10.1007/978-1-4939-7704-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Charville GW, Longacre TA. Surgical Pathology of Gastrointestinal Stromal Tumors: Practical Implications of Morphologic and Molecular Heterogeneity for Precision Medicine. Adv Anat Pathol 2017; 24:336-353. [PMID: 28820749 DOI: 10.1097/pap.0000000000000166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal stromal tumor (GIST), the most common mesenchymal neoplasm of the gastrointestinal tract, exhibits diverse histologic and clinical manifestations. With its putative origin in the gastrointestinal pacemaker cell of Cajal, GIST can arise in association with any portion of the tubular gastrointestinal tract. Morphologically, GISTs are classified as spindled or epithelioid, though each of these subtypes encompasses a broad spectrum of microscopic appearances, many of which mimic other histologic entities. Despite this morphologic ambiguity, the diagnosis of GIST is aided in many cases by immunohistochemical detection of KIT (CD117) or DOG1 expression. The natural history of GIST ranges from that of a tumor cured by surgical resection to that of a locally advanced or even widely metastatic, and ultimately fatal, disease. This clinicopathologic heterogeneity is paralleled by an underlying molecular diversity: the majority of GISTs are associated with spontaneous activating mutations in KIT, PDGFRA, or BRAF, while additional subsets are driven by genetic lesions-often inherited-of NF1 or components of the succinate dehydrogenase enzymatic complex. Specific gene mutations correlate with particular anatomic or morphologic characteristics and, in turn, with distinct clinical behaviors. Therefore, prognostication and treatment are increasingly dictated not only by morphologic clues, but also by accompanying molecular genetic features. In this review, we provide a comprehensive description of the heterogenous molecular underpinnings of GIST, including implications for the practicing pathologist with regard to morphologic identification, immunohistochemical diagnosis, and clinical management.
Collapse
|
14
|
Hsu KC, Wang FS. Model-based optimization approaches for precision medicine: A case study in presynaptic dopamine overactivity. PLoS One 2017; 12:e0179575. [PMID: 28614410 PMCID: PMC5470743 DOI: 10.1371/journal.pone.0179575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Precision medicine considers an individual’s unique physiological characteristics as strongly influential in disease vulnerability and in response to specific therapies. Predicting an individual’s susceptibility to developing an illness, making an accurate diagnosis, maximizing therapeutic effects, and minimizing adverse effects for treatment are essential in precision medicine. We introduced model-based precision medicine optimization approaches, including pathogenesis, biomarker detection, and drug target discovery, for treating presynaptic dopamine overactivity. Three classes of one-hit and two-hit enzyme defects were detected as the causes of disease states by the optimization approach of pathogenesis. The cluster analysis and support vector machine was used to detect optimal biomarkers in order to discriminate the accurate etiology from three classes of disease states. Finally, the fuzzy decision-making method was employed to discover common and specific drug targets for each classified disease state. We observed that more accurate diagnoses achieved higher satisfaction grades and dosed fewer enzyme targets to treat the disease. Furthermore, satisfaction grades for common drugs were lower than for specific ones, but common drugs could simultaneously treat several disease states that had different etiologies.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Salazar J, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. The Alzheimer's Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. Alzheimers Dement 2017; 13:561-571. [PMID: 27931796 PMCID: PMC5536850 DOI: 10.1016/j.jalz.2016.10.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to validate biomarkers for Alzheimer's disease (AD) clinical trials. ADNI-3, which began on August 1, 2016, is a 5-year renewal of the current ADNI-2 study. METHODS ADNI-3 will follow current and additional subjects with normal cognition, mild cognitive impairment, and AD using innovative technologies such as tau imaging, magnetic resonance imaging sequences for connectivity analyses, and a highly automated immunoassay platform and mass spectroscopy approach for cerebrospinal fluid biomarker analysis. A Systems Biology/pathway approach will be used to identify genetic factors for subject selection/enrichment. Amyloid positron emission tomography scanning will be standardized using the Centiloid method. The Brain Health Registry will help recruit subjects and monitor subject cognition. RESULTS Multimodal analyses will provide insight into AD pathophysiology and disease progression. DISCUSSION ADNI-3 will aim to inform AD treatment trials and facilitate development of AD disease-modifying treatments.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Jennifer Salazar
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Mallik AK, Drzezga A, Minoshima S. Molecular Imaging and Precision Medicine in Dementia and Movement Disorders. PET Clin 2017; 12:119-136. [DOI: 10.1016/j.cpet.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
The Emerging Role of Proteomics in Precision Medicine: Applications in Neurodegenerative Diseases and Neurotrauma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:59-70. [DOI: 10.1007/978-3-319-60733-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Hampel H, O'Bryant SE, Castrillo JI, Ritchie C, Rojkova K, Broich K, Benda N, Nisticò R, Frank RA, Dubois B, Escott-Price V, Lista S. PRECISION MEDICINE - The Golden Gate for Detection, Treatment and Prevention of Alzheimer's Disease. J Prev Alzheimers Dis 2016; 3:243-259. [PMID: 28344933 PMCID: PMC5363725 DOI: 10.14283/jpad.2016.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During this decade, breakthrough conceptual shifts have commenced to emerge in the field of Alzheimer's disease (AD) recognizing risk factors and the non-linear dynamic continuum of complex pathophysiologies amongst a wide dimensional spectrum of multi-factorial brain proteinopathies/neurodegenerative diseases. As is the case in most fields of medicine, substantial advancements in detecting, treating and preventing AD will likely evolve from the generation and implementation of a systematic precision medicine strategy. This approach will likely be based on the success found from more advanced research fields, such as oncology. Precision medicine will require integration and transfertilization across fragmented specialities of medicine and direct reintegration of Neuroscience, Neurology and Psychiatry into a continuum of medical sciences away from the silo approach. Precision medicine is biomarker-guided medicine on systems-levels that takes into account methodological advancements and discoveries of the comprehensive pathophysiological profiles of complex multi-factorial neurodegenerative diseases, such as late-onset sporadic AD. This will allow identifying and characterizing the disease processes at the asymptomatic preclinical stage, where pathophysiological and topographical abnormalities precede overt clinical symptoms by many years to decades. In this respect, the uncharted territory of the AD preclinical stage has become a major research challenge as the field postulates that early biomarker guided customized interventions may offer the best chance of therapeutic success. Clarification and practical operationalization is needed for comprehensive dissection and classification of interacting and converging disease mechanisms, description of genomic and epigenetic drivers, natural history trajectories through space and time, surrogate biomarkers and indicators of risk and progression, as well as considerations about the regulatory, ethical, political and societal consequences of early detection at asymptomatic stages. In this scenario, the integrated roles of genome sequencing, investigations of comprehensive fluid-based biomarkers and multimodal neuroimaging will be of key importance for the identification of distinct molecular mechanisms and signaling pathways in subsets of asymptomatic people at greatest risk for progression to clinical milestones due to those specific pathways. The precision medicine strategy facilitates a paradigm shift in Neuroscience and AD research and development away from the classical "one-size-fits-all" approach in drug discovery towards biomarker guided "molecularly" tailored therapy for truly effective treatment and prevention options. After the long and winding decade of failed therapy trials progress towards the holistic systems-based strategy of precision medicine may finally turn into the new age of scientific and medical success curbing the global AD epidemic.
Collapse
Affiliation(s)
- H Hampel
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - S E O'Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX USA
| | - J I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain
| | - C Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Rojkova
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - K Broich
- President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - N Benda
- Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - R Nisticò
- Department of Biology, University of Rome "Tor Vergata" & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - R A Frank
- Siemens Healthineers North America, Siemens Medical Solutions USA, Inc, Malvern, PA, USA
| | - B Dubois
- AXA Research Fund & UPMC Chair, Paris, France; Sorbonne Universities, Pierre and Marie Curie University, Paris 06, Institute of Memory and Alzheimer's Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - V Escott-Price
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - S Lista
- AXA Research Fund & UPMC Chair, Paris, France; IHU-A-ICM - Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
19
|
Zha J, Liu XM, Zhu J, Liu SY, Lu S, Xu PX, Yu XL, Liu RT. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep 2016; 6:36631. [PMID: 27824125 PMCID: PMC5100551 DOI: 10.1038/srep36631] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023] Open
Abstract
Overproduction or poor clearance of amyloids lead to amyloid aggregation and even amyloidosis development. Different amyloids may interact synergistically to promote their aggregation and accelerate pathology in amyloidoses. Amyloid oligomers assembled from different amyloids share common structures and epitopes, and are considered the most toxic species in the pathologic processes of amyloidoses, which suggests that an agent targeting the common epitope of toxic oligomers could provide benefit to several amyloidoses. In this study, we firstly showed that an oligomer-specific single-chain variable fragment antibody, W20 simultaneously improved motor and cognitive function in Parkinson's disease and Huntington's disease mouse models, and attenuated a number of neuropathological features by reducing α-synuclein and mutant huntingtin protein aggregate load and preventing synaptic degeneration. Neuroinflammation and oxidative stress in vivo were also markedly inhibited. The proposed strategy targeting the common epitopes of amyloid oligomers presents promising potential for treating Parkinson's disease, Huntington's disease, Alzheimer's disease, and other amyloidoses.
Collapse
Affiliation(s)
- Jun Zha
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Meng Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shu-Ying Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,School of Life Science, Ningxia University, Yinchuan, China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peng-Xin Xu
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer's disease: evidence from genome-wide association studies and beyond. Lancet Neurol 2016; 15:857-868. [DOI: 10.1016/s1474-4422(16)00127-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
|
21
|
Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother 2016; 17:47-57. [DOI: 10.1080/14737175.2016.1204234] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France
- IHU-A-ICM – Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France
- Department of Neurology, Sorbonne Universities, Institute of Memory and Alzheimer’s Disease (IM2A) & Brain and Spine Institute (ICM) UMR S 1127, Pitié-Salpêtrière University Hospital, Pierre and Marie Curie University, Paris 06, Paris, France
| |
Collapse
|
22
|
Tan L, Jiang T, Tan L, Yu JT. Toward precision medicine in neurological diseases. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:104. [PMID: 27127757 DOI: 10.21037/atm.2016.03.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technological development has paved the way for accelerated genomic discovery and is bringing precision medicine into view. The goal of precision medicine is to deliver optimally targeted and timed interventions tailored to an individual's molecular drivers of disease. Neurological diseases are promisingly suited models for precision medicine because of the rapidly expanding genetic knowledge base, phenotypic classification, the development of biomarkers and the potential modifying treatments. Moving forward, it is crucial that through these integrated research platforms to provide analysis both for accurate personal genome analysis and gene and drug discovery. Here we describe our vision of how precision medicine can bring greater clarity to the clinical and biological complexity of neurological diseases.
Collapse
Affiliation(s)
- Lin Tan
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA ; 4 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Teng Jiang
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA ; 4 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA ; 4 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Jin-Tai Yu
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA ; 4 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
23
|
Moon J, Lee ST, Kong IG, Byun JI, Sunwoo JS, Shin JW, Shim JY, Park JH, Jeon D, Jung KH, Jung KY, Kim DY, Lee SK, Kim M, Chu K. Early diagnosis of Alzheimer's disease from elevated olfactory mucosal miR-206 level. Sci Rep 2016; 6:20364. [PMID: 26842588 PMCID: PMC4740889 DOI: 10.1038/srep20364] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/31/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNA-206, which suppresses the expression of brain-derived neurotrophic factor, is known to be elevated in the brains of Alzheimer's disease (AD) patients. We performed intranasal biopsy of the olfactory epithelia of early dementia patients (n = 24) and cognitively healthy controls (n = 9). Patients with significant depression (n = 8) were analyzed separately, as their cognitive impairments were thought to be caused by their depression. Real-time PCR was performed on the biopsied tissues. The relative microRNA-206 level exhibited a 7.8-fold increase (P = 0.004) in the mild cognitive impairment group (CDR 0.5; n = 13) and a 41.5-fold increase (P < 0.001) in the CDR 1 group (n = 11). However, this level was not increased in the depression group, even in those with cognitive decline. Using the optimal cutoff value, the sensitivity/specificity for diagnosing CDR 0.5 and CDR 1 dementia were 87.5%/94.1% and 90.9%/93.3%, respectively. In ROC analysis, the AUCs were 0.942 and 0.976 in the CDR 0.5 and CDR 1 groups, respectively. The olfactory mucosal microRNA-206 level and cognitive assessment scores were significantly correlated in the non-depressed subjects with cognitive impairment. In conclusion, the olfactory mucosal microRNA-206 level can be easily measured, and it can be utilized as an excellent biomarker for the diagnosis of early AD, including mild cognitive impairment.
Collapse
Affiliation(s)
- Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | | | - Jung-Ick Byun
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University College of Medicine, Seoungnam, South Korea
| | - Ji-Young Shim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Hyun Park
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Daejong Jeon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea.,Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Advanced Neural Technologies, Seoul, South Korea
| |
Collapse
|
24
|
Zou ZY, Liu CY, Che CH, Huang HP. Toward precision medicine in amyotrophic lateral sclerosis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:27. [PMID: 26889480 PMCID: PMC4731596 DOI: 10.3978/j.issn.2305-5839.2016.01.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Precision medicine is an innovative approach that uses emerging biomedical technologies to deliver optimally targeted and timed interventions, customized to the molecular drivers of an individual's disease. This approach is only just beginning to be considered for treating amyotrophic lateral sclerosis (ALS). The clinical and biological complexities of ALS have hindered development of effective therapeutic strategies. In this review we consider applying the key elements of precision medicine to ALS: phenotypic classification, comprehensive risk assessment, presymptomatic period detection, potential molecular pathways, disease model development, biomarker discovery and molecularly tailored interventions. Together, these would embody a precision medicine approach, which may provide strategies for optimal targeting and timing of efforts to prevent, stop or slow progression of ALS.
Collapse
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
25
|
Cholerton B, Larson EB, Quinn JF, Zabetian CP, Mata IF, Keene CD, Flanagan M, Crane PK, Grabowski TJ, Montine KS, Montine TJ. Precision Medicine: Clarity for the Complexity of Dementia. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:500-6. [PMID: 26724389 DOI: 10.1016/j.ajpath.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 01/11/2023]
Abstract
Three key elements to precision medicine are stratification by risk, detection of pathophysiological processes as early as possible (even before clinical presentation), and alignment of mechanism of action of intervention(s) with an individual's molecular driver(s) of disease. Used for decades in the management of some rare diseases and now gaining broad currency in cancer care, a precision medicine approach is beginning to be adapted to cognitive impairment and dementia. This review focuses on the application of precision medicine to address the clinical and biological complexity of two common neurodegenerative causes of dementia: Alzheimer disease and Parkinson disease.
Collapse
Affiliation(s)
- Brenna Cholerton
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Eric B Larson
- Group Health Research Institute, Seattle, Washington
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon; Portland Veterans Affairs Medical Center, Portland, Oregon
| | - Cyrus P Zabetian
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington; Parkinson's Disease Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington; Department of Neurology, University of Washington, Seattle, Washington
| | - Ignacio F Mata
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington; Department of Neurology, University of Washington, Seattle, Washington
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Margaret Flanagan
- Department of Pathology, University of Washington, Seattle, Washington
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas J Grabowski
- Department of Neurology, University of Washington, Seattle, Washington; Department of Radiology, University of Washington, Seattle, Washington
| | | | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|