1
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
2
|
Jing R, Falchetti M, Han T, Najia M, Hensch LT, Meader E, Lummertz da Rocha E, Kononov M, Wang S, Bingham T, Li Z, Zhao Y, Frenis K, Kubaczka C, Yang S, Jha D, Rodrigues-Luiz GF, Rowe RG, Schlaeger TM, Maus MV, North TE, Zon LI, Daley GQ. Maturation and persistence of CAR T cells derived from human pluripotent stem cells via chemical inhibition of G9a/GLP. Cell Stem Cell 2025; 32:71-85.e5. [PMID: 39504968 PMCID: PMC11698653 DOI: 10.1016/j.stem.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Elucidating mechanisms of T cell development can guide in vitro T cell differentiation from induced pluripotent stem cells (iPSCs) and facilitate off-the-shelf T cell-based immunotherapies. Using a stroma-free human iPSC-T cell differentiation platform, we screened for epigenetic modulators that influence T cell specification and identified the H3K9-directed histone methyltransferases G9a/GLP as repressors of T cell fate. We show that G9a/GLP inhibition during specific time windows of differentiation of hematopoietic stem and progenitor cells (HSPCs) skews cell fates toward lymphoid lineages. Inhibition of G9a/GLP promotes the production of lymphoid cells during zebrafish embryonic hematopoiesis, demonstrating the evolutionary conservation of G9a/GLP function. Importantly, chemical inhibition of G9a/GLP facilitates the generation of mature iPSC-T cells that bear transcriptional similarity to peripheral blood αβ T cells. When engineered to express chimeric antigen receptors, the epigenetically engineered iPSC-T cells exhibit enhanced effector functions in vitro and durable, persistent antitumor activity in a xenograft tumor-rechallenge model.
Collapse
Affiliation(s)
- Ran Jing
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcelo Falchetti
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tianxiao Han
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohamad Najia
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Luca T Hensch
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eleanor Meader
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Martin Kononov
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Stephanie Wang
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Trevor Bingham
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zhiheng Li
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yunliang Zhao
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Katie Frenis
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Deepak Jha
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gabriela F Rodrigues-Luiz
- Graduate Program of Pharmacology, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - R Grant Rowe
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
4
|
Sun H, Qiu J, Qiu J. Epigenetic regulation of innate lymphoid cells. Eur J Immunol 2024; 54:e2350379. [PMID: 38824666 DOI: 10.1002/eji.202350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Innate lymphoid cells (ILCs) lack antigen-specific receptors and are considered the innate arm of the immune system, phenotypically and functionally mirroring CD4+ helper T cells. ILCs are categorized into groups 1, 2, and 3 based on transcription factors and cytokine expression. ILCs predominantly reside in mucosal tissues and play important roles in regional immune responses. The development and function of ILC subsets are controlled by both transcriptional and epigenetic mechanisms, which have been extensively studied in recent years. Epigenetic regulation refers to inheritable changes in gene expression that occur without affecting DNA sequences. This mainly includes chromatin status, histone modifications, and DNA methylation. In this review, we summarize recent discoveries on epigenetic mechanisms regulating ILC development and function, and how these regulations affect disease progression under pathological conditions. Although the ablation of specific epigenetic regulators can cause global changes in corresponding epigenetic modifications to the chromatin, only partial genes with altered epigenetic modifications change their mRNA expression, resulting in specific outcomes in cell differentiation and function. Therefore, elucidating epigenetic mechanisms underlying the regulation of ILCs will provide potential targets for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Sun
- Department of Laboratory Medicine, Department of Blood Transfusion, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Sudholz H, Schuster IS, Foroutan M, Sng X, Andoniou CE, Doan A, Camilleri T, Shen Z, Zaph C, Degli-Esposti MA, Huntington ND, Scheer S. DOT1L maintains NK cell phenotype and function for optimal tumor control. Cell Rep 2024; 43:114333. [PMID: 38865244 DOI: 10.1016/j.celrep.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Histone methyltransferases (HMTs) are crucial in gene regulation and function, yet their role in natural killer (NK) cell biology within the tumor microenvironment (TME) remains largely unknown. We demonstrate that the HMT DOT1L limits NK cell conversion to CD49a+ CD49b+ intILC1, a subset that can be observed in the TME in response to stimulation with transforming growth factor (TGF)-β and is correlated with impaired tumor control. Deleting Dot1l in NKp46-expressing cells reveals its pivotal role in maintaining NK cell phenotype and function. Loss of DOT1L skews NK cells toward intILC1s even in the absence of TGF-β. Transcriptionally, DOT1L-null NK cells closely resemble intILC1s and ILC1s, correlating with altered NK cell responses and impaired solid tumor control. These findings deepen our understanding of NK cell biology and could inform approaches to prevent NK cell conversion to intILC1s in adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Harrison Sudholz
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Momeneh Foroutan
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, VIC 3039, Australia
| | - Xavier Sng
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Anh Doan
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Tania Camilleri
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Zihan Shen
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Colby Zaph
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Nicholas D Huntington
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, VIC 3039, Australia.
| | - Sebastian Scheer
- Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Song C, Kim MY, Cho JY. The Role of Protein Methyltransferases in Immunity. Molecules 2024; 29:360. [PMID: 38257273 PMCID: PMC10819338 DOI: 10.3390/molecules29020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The immune system protects our body from bacteria, viruses, and toxins and removes malignant cells. Activation of immune cells requires the onset of a network of important signaling proteins. Methylation of these proteins affects their structure and biological function. Under stimulation, T cells, B cells, and other immune cells undergo activation, development, proliferation, differentiation, and manufacture of cytokines and antibodies. Methyltransferases alter the above processes and lead to diverse outcomes depending on the degree and type of methylation. In the previous two decades, methyltransferases have been reported to mediate a great variety of immune stages. Elucidating the roles of methylation in immunity not only contributes to understanding the immune mechanism but is helpful in the development of new immunotherapeutic strategies. Hence, we review herein the studies on methylation in immunity, aiming to provide ideas for new approaches.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
7
|
Verma M, McKay J, Verma D. Role of epigenetics in innate lymphoid cells. Epigenomics 2023; 15:615-618. [PMID: 37435673 DOI: 10.2217/epi-2023-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Epigenetics plays a crucial role in gene regulation and cell function without changing the DNA sequence. The process of differentiation in eukaryotes during cellular morphogenesis is a paradigm of epigenetic change; stem cells develop into pluripotent cell lines in the embryo, eventually becoming terminally developed cells. Recently, epigenetic changes were shown to play an important role in immune cell development, activation and differentiation, which impacts chromatin remodeling, DNA methylation, post-translational histone modifications and small or lncRNA engagement. Innate lymphoid cells (ILCs) are newly identified immune cells that lack antigen receptors. ILCs differentiate from hematopoietic stem cells via multipotent progenitor stages. In this editorial, the authors discuss the epigenetic regulation of ILC differentiation and function.
Collapse
Affiliation(s)
- Mukesh Verma
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jerome McKay
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Divya Verma
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
8
|
Naito M, Nakanishi Y, Motomura Y, Takamatsu H, Koyama S, Nishide M, Naito Y, Izumi M, Mizuno Y, Yamaguchi Y, Nojima S, Okuzaki D, Kumanogoh A. Semaphorin 6D-expressing mesenchymal cells regulate IL-10 production by ILC2s in the lung. Life Sci Alliance 2022; 5:5/11/e202201486. [PMID: 36038260 PMCID: PMC9434704 DOI: 10.26508/lsa.202201486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) have features specific to the niches in which they reside, and we found that semaphorin 6D signaling in the lung niche controls IL-10 production by ILC2s. Group 2 innate lymphoid cells (ILC2s) have been implicated in both physiologic tissue remodeling and allergic pathology, yet the niche signaling required for ILC2 properties is poorly understood. Here, we show that an axonal guidance cue semaphorin 6D (Sema6D) plays critical roles in the maintenance of IL-10–producing ILC2s. Sema6d−/− mice exhibit a severe steady-state reduction in ILC2s in peripheral sites such as the lung, visceral adipose tissue, and mesentery. Interestingly, loss of Sema6D results in suppressed alarmin-driven type 2 cytokine production but increased IL-10 production by lung ILC2s both in vitro and in vivo. Consequently, Sema6d−/− mice are resistant to the development of allergic lung inflammation. We further found that lung mesenchymal cells highly express Sema6D, and that niche-derived Sema6D is responsible for these phenotypes through plexin A1. Collectively, these findings suggest that niche-derived Sema6D is implicated in physiological and pathological characteristics of ILC2s.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Yasutaka Motomura
- Laboratory for Innate Immune Systems, Department for Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Laboratory for Innate Immune Systems, WPI, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan .,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan.,Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
9
|
Beckstette M, Lu CW, Herppich S, Diem EC, Ntalli A, Ochel A, Kruse F, Pietzsch B, Neumann K, Huehn J, Floess S, Lochner M. Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions. J Exp Med 2022; 219:213389. [PMID: 35938981 PMCID: PMC9386974 DOI: 10.1084/jem.20210663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node–derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33–mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs.
Collapse
Affiliation(s)
- Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, Bielefeld, Germany
| | - Chia-Wen Lu
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elia C Diem
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Anna Ntalli
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
10
|
Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine in Pancreatic Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15070824. [PMID: 35890123 PMCID: PMC9323654 DOI: 10.3390/ph15070824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenetic modifications could drive some of the molecular events implicated in proliferation, drug resistance and metastasis of pancreatic ductal adenocarcinoma (PDAC). Thus, epigenetic enzyme inhibitors could be the key to revert those events and transform PDAC into a drug-sensitive tumor. We performed a systematic study with five different epigenetic enzyme inhibitors (1, UVI5008, MS275, psammaplin A, and BIX01294) targeting either Histone Deacetylase (HDAC) 1 or 1/4, DNA methyltransferase 3a (DNMT3a), Euchromatic histone lysine methyltransferase 2 (EHMT2), or Sirtuin 1 (SIRT1), as well as one drug that restores the p53 function (P53R3), in three different human PDAC cell lines (SKPC-1, MIA PaCa-2, and BxPC-3) using 2D and 3D cell cultures. The synergistic effect of these antitumoral drugs with gemcitabine was tested and the most efficient combinations were characterized by RNA-seq. The inhibition of HDAC1/4 (MS275), HDAC1/4/SIRT1/DNMT3a (UVI5008) or EHMT2 (BIX01294) induced a significant reduction on the cell viability, even in gemcitabine-resistance cells. The combination of UVI5008 or MS275 with gemcitabine induced a synergistic effect at low concentration and the RNA-Seq analysis revealed some synergy candidate genes as potential biomarkers. Reverting aberrant epigenetic modifications in combination with gemcitabine offers an alternative treatment for PDAC patients, with an important reduction of the therapeutic dose.
Collapse
|
11
|
Burns VE, Kerppola TK. Keap1 moderates the transcription of virus induced genes through G9a-GLP and NFκB p50 recruitment. Immunology 2022; 167:105-121. [PMID: 35751391 DOI: 10.1111/imm.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cells must control genes that are induced by virus infection to mitigate deleterious consequences of inflammation. We investigated the mechanisms whereby Keap1 moderates the transcription of genes that are induced by Sendai virus infection in mouse embryo fibroblasts (MEFs). Keap1-/- deletions increased the transcription of virus induced genes independently of Nrf2. Keap1 moderated early virus induced gene transcription. Virus infection induced Keap1 to bind Ifnb1, Tnf and Il6, and reduced Keap1 binding at Cdkn1a and Ccng1. Virus infection induced G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition. Keap1-/- deletions eliminated G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition, but they did not affect NFκB p65, IRF3 or cJun recruitment. G9a-GLP inhibitors (BIX01294, MS012, BRD4770) enhanced virus induced gene transcription in MEFs with intact Keap1, but not in MEFs with Keap1-/- deletions. G9a-GLP inhibitors augmented Keap1 binding to virus induced genes in infected MEFs, and to cell cycle genes in uninfected MEFs. G9a-GLP inhibitors augmented NFκB subunit recruitment in MEFs with intact Keap1. G9a-GLP inhibitors stabilized Keap1 retention in permeabilized MEFs. G9a-GLP lysine methyltransferase activity was required for Keap1 to moderate transcription, and it moderated Keap1 binding to chromatin. The interdependent effects of Keap1 and G9a-GLP on the recruitment of each other and on the moderation of virus induced gene transcription constitute a feedback circuit. Keap1 and the electrophile tBHQ reduced virus induced gene transcription through different mechanisms, and they regulated the recruitment of different NFκB subunits. Characterization of the mechanisms whereby Keap1, G9a-GLP and NFκB p50 moderate virus induced gene transcription can facilitate the development of immunomodulatory agents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Abstract
Epigenetic regulation is a crucial component of DNA maintenance and cellular identity. As our understanding of the vast array of proteins that contribute to chromatin accessibility has advanced, the role of epigenetic remodelers in disease has become more apparent. G9a is a histone methyltransferase that contributes to immune cell differentiation and function, neuronal development, and has been implicated in diseases, including cancer. In melanoma, recurrent mutations and amplifications of G9a have led to its identification as a therapeutic target. The pathways that are regulated by G9a provide an insight into relevant biomarkers for patient stratification. Future work is aided by the breadth of literature on G9a function during normal differentiation and development, along with similarities to EZH2, another histone methyltransferase that forms a synthetic lethal relationship with members of the SWI/SNF complex in certain cancers. Here, we review the literature on G9a, its role in melanoma, and lessons from EZH2 inhibitor studies.
Collapse
|
13
|
Zaini A, Fulford TS, Grumont RJ, Runting J, Rodrigues G, Ng J, Gerondakis S, Zaph C, Scheer S. c-Rel Is Required for IL-33-Dependent Activation of ILC2s. Front Immunol 2021; 12:667922. [PMID: 34194431 PMCID: PMC8236704 DOI: 10.3389/fimmu.2021.667922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are emerging as important cellular regulators of homeostatic and disease-associated immune processes. The cytokine interleukin-33 (IL-33) promotes ILC2-dependent inflammation and immunity, with IL-33 having been shown to activate NF-κB in a wide variety of cell types. However, it is currently unclear which NF-κB members play an important role in IL-33-dependent ILC2 biology. Here, we identify the NF-κB family member c-Rel as a critical component of the IL-33-dependent activation of ILC2s. Although c-Rel is dispensable for ILC2 development, it is critical for ILC2 function in the lung, with c-Rel-deficient (c-Rel-/- ) mice present a significantly reduced response to papain- and IL-33-induced lung inflammation. We also show that the absence of c-Rel reduces the IL-33-dependent expansion of ILC2 precursors and lower levels of IL-5 and IL-13 cytokine production by mature ILC2s in the lung. Together, these results identify the IL-33-c-Rel axis as a central control point of ILC2 activation and function.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Thomas S. Fulford
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Raelene J. Grumont
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Grace Rodrigues
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Judy Ng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Ren X, Wang R, Yu XT, Cai B, Guo F. Regulation of histone H3 lysine 9 methylation in inflammation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1931477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xin Ren
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Rong Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiao-ting Yu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bo Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fei Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
15
|
The transcription factors GFI1 and GFI1B as modulators of the innate and acquired immune response. Adv Immunol 2021; 149:35-94. [PMID: 33993920 DOI: 10.1016/bs.ai.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GFI1 and GFI1B are small nuclear proteins of 45 and 37kDa, respectively, that have a simple two-domain structure: The first consists of a group of six c-terminal C2H2 zinc finger motifs that are almost identical in sequence and bind to very similar, specific DNA sites. The second is an N-terminal 20 amino acid SNAG domain that can bind to the pocket of the histone demethylase KDM1A (LSD1) near its active site. When bound to DNA, both proteins act as bridging factors that bring LSD1 and associated proteins into the vicinity of methylated substrates, in particular histone H3 or TP53. GFI1 can also bring methyl transferases such as PRMT1 together with its substrates that include the DNA repair proteins MRE11 and 53BP1, thereby enabling their methylation and activation. While GFI1B is expressed almost exclusively in the erythroid and megakaryocytic lineage, GFI1 has clear biological roles in the development and differentiation of lymphoid and myeloid immune cells. GFI1 is required for lymphoid/myeloid and monocyte/granulocyte lineage decision as well as the correct nuclear interpretation of a number of important immune-signaling pathways that are initiated by NOTCH1, interleukins such as IL2, IL4, IL5 or IL7, by the pre TCR or -BCR receptors during early lymphoid differentiation or by T and B cell receptors during activation of lymphoid cells. Myeloid cells also depend on GFI1 at both stages of early differentiation as well as later stages in the process of activation of macrophages through Toll-like receptors in response to pathogen-associated molecular patterns. The knowledge gathered on these factors over the last decades puts GFI1 and GFI1B at the center of many biological processes that are critical for both the innate and acquired immune system.
Collapse
|
16
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution. Nat Commun 2020; 11:4076. [PMID: 32796851 PMCID: PMC7427797 DOI: 10.1038/s41467-020-17944-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) are an important regulator for immunity, inflammation and tissue homeostasis in the intestine, but how ILC3 activation is regulated remains elusive. Here we identify a new circular RNA (circRNA) circKcnt2 that is induced in ILC3s during intestinal inflammation. Deletion of circKcnt2 causes gut ILC3 activation and severe colitis in mice. Mechanistically, circKcnt2, as a nuclear circRNA, recruits the nucleosome remodeling deacetylase (NuRD) complex onto Batf promoter to inhibit Batf expression; this in turn suppresses Il17 expression and thereby ILC3 inactivation to promote innate colitis resolution. Furthermore, Mbd3−/−Rag1−/− and circKcnt2−/−Rag1−/− mice develop severe innate colitis following dextran sodium sulfate (DSS) treatments, while simultaneous deletion of Batf promotes colitis resolution. In summary, our data support a function of the circRNA circKcnt2 in regulating ILC3 inactivation and resolution of innate colitis. Type 3 innate lymphoid cells (ILC3) are involved in maintaining gut immune homeostasis. Here the authors identify a circular RNA, circKcnt2, to be induced in ILC3s from inflamed gut, yet circKcnt2 deletion aggravates mouse experimental colitis, thereby implicating circKcnt2 as a potential feedback regulator of ILC3 activation and gut immunity.
Collapse
|
18
|
Miller MM, Reinhardt RL. The Heterogeneity, Origins, and Impact of Migratory iILC2 Cells in Anti-helminth Immunity. Front Immunol 2020; 11:1594. [PMID: 32793230 PMCID: PMC7390839 DOI: 10.3389/fimmu.2020.01594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Soil-transmitted helminths represent a major global health burden with infections and infection-related comorbidities causing significant reductions in the quality of life for individuals living in endemic areas. Repeated infections and chronic colonization by these large extracellular worms in mammals led to the evolution of type-2 immunity characterized by the production of the type-2 cytokines interleukin (IL)-4, IL-5, and IL-13. Although a number of adaptive and innate immune cells produce type-2 cytokines, a key cellular source in the context of helminth infection is group 2 innate lymphoid cells (ILC2s). ILC2s promote mucosal barrier homeostasis, integrity, and repair by rapidly responding to epithelial cues in mucosal tissues. Though tissue-resident ILC2s (nILC2s) have been studied in detail over the last decade, considerably less is known with regard to a subset of inflammatory ILC2s (iILC2s) that migrate to the lungs of mice early after Nippostrongylus brasiliensis infection and are potent early producers of type-2 cytokines. This review will discuss the relationship and differences between nILC2s and iILC2s that establish their unique roles in anti-helminth immunity. We have placed particular emphasis on studies investigating iILC2 origin, function, and their potential long-term contribution to tissue-resident ILC2 reservoirs in settings of helminth infection.
Collapse
Affiliation(s)
- Mindy M Miller
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - R Lee Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado-Anschutz Medical, Aurora, CO, United States
| |
Collapse
|
19
|
Ercolano G, Wyss T, Salomé B, Romero P, Trabanelli S, Jandus C. Distinct and shared gene expression for human innate versus adaptive helper lymphoid cells. J Leukoc Biol 2020; 108:723-737. [PMID: 32017245 PMCID: PMC7496918 DOI: 10.1002/jlb.5ma0120-209r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the latest identified innate immune cell family. Given their similarity in transcription factor expression and cytokine secretion profiles, ILCs have been considered as the innate phenocopy of CD4 Th cells. Here, we explored the transcriptome of circulating human ILC subsets as opposed to CD4 Th cell subsets. We describe transcriptomic differences between total ILCs and total CD4 Th cells, as well as between paired innate and adaptive cell subsets (ILC1 vs. Th1; ILC2 vs. Th2; and ILC3 vs. Th17 cells). In particular, we observed differences in expression of genes involved in cell trafficking such as CCR1, CCR6 and CXCR3, innate activation and inhibitory functions, including CD119, 2B4, TIGIT, and CTLA‐4, and neuropeptide receptors, such as VIPR2. Moreover, we report for the first time on distinct expression of long noncoding RNAs (lncRNAs) in innate vs. adaptive cells, arguing for a potential role of lncRNA in shaping human ILC biology. Altogether, our results point for unique, rather than redundant gene organization in ILCs compared to CD4 Th cells, in regard to kinetics, fine‐tuning and spatial organization of the immune response.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Tania Wyss
- Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Bérengère Salomé
- Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
ILC2s in High Definition: Decoding the Logic of Tissue-Based Immunity. Trends Immunol 2020; 41:7-16. [DOI: 10.1016/j.it.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|
21
|
Lo BC, Canals Hernaez D, Scott RW, Hughes MR, Shin SB, Underhill TM, Takei F, McNagny KM. The Transcription Factor RORα Preserves ILC3 Lineage Identity and Function during Chronic Intestinal Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:3209-3215. [PMID: 31676672 DOI: 10.4049/jimmunol.1900781] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Innate lymphoid cells (ILCs) are critical for host defense and tissue repair but can also contribute to chronic inflammatory diseases. The transcription factor RORα is required for ILC2 development but is also highly expressed by other ILC subsets where its function remains poorly defined. We previously reported that Rorasg/sg bone marrow chimeric mice (C57BL/6J) were protected from Salmonella-induced intestinal fibrosis due to defective ILC3 responses. In this study, single-cell RNA analysis of ILCs isolated from inflamed tissues indicates that RORα perturbation led to a reduction in ILC3 lineages. Furthermore, residual Rorasg/sg ILC3s have decreased expression of key signature genes, including Rorc and activating cytokine receptors. Collectively, our data suggest that RORα plays a key role in preserving functional ILC3s by modulating their ability to integrate environmental cues to efficiently produce cytokines.
Collapse
Affiliation(s)
- Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - R Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Samuel B Shin
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - T Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Fumio Takei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| |
Collapse
|
22
|
Burrows K, Ngai L, Wong F, Won D, Mortha A. ILC2 Activation by Protozoan Commensal Microbes. Int J Mol Sci 2019; 20:ijms20194865. [PMID: 31574995 PMCID: PMC6801642 DOI: 10.3390/ijms20194865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are a member of the ILC family and are involved in protective and pathogenic type 2 responses. Recent research has highlighted their involvement in modulating tissue and immune homeostasis during health and disease and has uncovered critical signaling circuits. While interactions of ILC2s with the bacterial microbiome are rather sparse, other microbial members of our microbiome, including helminths and protozoans, reveal new and exciting mechanisms of tissue regulation by ILC2s. Here we summarize the current field on ILC2 activation by the tissue and immune environment and highlight particularly new intriguing pathways of ILC2 regulation by protozoan commensals in the intestinal tract.
Collapse
Affiliation(s)
- Kyle Burrows
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Louis Ngai
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Flora Wong
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
- Ranomics, Inc. Toronto, ON M5G 1X5, Canada.
| | - David Won
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| | - Arthur Mortha
- University of Toronto, Department of Immunology, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Liu B, Yang L, Zhu X, Li H, Zhu P, Wu J, Lu T, He L, Liu N, Meng S, Zhou L, Ye B, Tian Y, Fan Z. Yeats4 drives ILC lineage commitment via activation of Lmo4 transcription. J Exp Med 2019; 216:2653-2668. [PMID: 31434684 PMCID: PMC6829595 DOI: 10.1084/jem.20182363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Liu et al. show that Yeats4 recruits the Dot1l–RNA Pol II complex onto the Lmo4 promoter by recognizing H3K27ac modification to initiate Lmo4 transcription in α4β7+ CLPs, leading to ILC lineage commitment. Innate lymphoid cells (ILCs) play critical roles in defending infections and maintaining mucosal homeostasis. All ILCs arise from common lymphoid progenitors (CLPs) in bone marrow. However, how CLPs stratify and differentiate into ILC lineages remains elusive. Here, we showed that Yeats4 is highly expressed in ILCs and their progenitors. Yeats4 conditional KO in the hematopoietic system causes decreased numbers of ILCs and impairs their effector functions. Moreover, Yeats4 regulates α4β7+ CLP differentiation toward common helper ILC progenitors (CHILPs). Mechanistically, Yeats4 recruits the Dot1l–RNA Pol II complex onto Lmo4 promoter through recognizing H3K27ac modification to initiate Lmo4 transcription in α4β7+ CLPs. Additionally, Lmo4 deficiency also impairs ILC lineage differentiation and their effector functions. Collectively, the Yeats4–Lmo4 axis is required for ILC lineage commitment.
Collapse
Affiliation(s)
- Benyu Liu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liuliu Yang
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tiankun Lu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Luyun He
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nian Liu
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu Meng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Buqing Ye
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of the Chinese Academy of Sciences, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Wallrapp A, Riesenfeld SJ, Burkett PR, Kuchroo VK. Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. Immunol Rev 2019; 286:53-73. [PMID: 30294962 DOI: 10.1111/imr.12702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immunity against pathogens is tightly regulated to ensure appropriate inflammatory responses that clear infection and prevent excessive tissue damage. Recent research has shown that type 2 innate lymphoid cells (ILC2s) contribute to steady-state tissue integrity and exert tissue-specific functions. However, upon exposure to inflammatory stimuli, they also initiate and amplify type 2 inflammation by inducing mucus production, eosinophilia, and Th2 differentiation. In this review, we discuss the regulation of ILC2 activation by transcription factors and metabolic pathways, as well as by extrinsic signals such as cytokines, lipid mediators, hormones, and neuropeptides. We also review recent discoveries about ILC2 plasticity and heterogeneity in different tissues, as revealed partly through single-cell RNA sequencing of transcriptional responses to various stimuli. Understanding the tissue-specific pathways that regulate ILC2 diversity and function is a critical step in the development of potential therapies for allergic diseases.
Collapse
Affiliation(s)
- Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts
| |
Collapse
|
25
|
Cherrier DE, Serafini N, Di Santo JP. Innate Lymphoid Cell Development: A T Cell Perspective. Immunity 2019; 48:1091-1103. [PMID: 29924975 DOI: 10.1016/j.immuni.2018.05.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023]
Abstract
Innate lymphoid cells (ILCs) and natural killer (NK) cells have garnered considerable interest due to their unique functional properties in immune defense and tissue homeostasis. Our current understanding of how these cells develop has been greatly facilitated by knowledge of T cell biology. Models of T cell differentiation provided the basis for a conceptual classification of these innate effectors and inspired a scheme of their activation and regulation. In this review, we discuss NK cell and ILC development from a "T cell standpoint" in an attempt to extend the analogy between adaptive T cells and their innate ILC and NK cell counterparts.
Collapse
Affiliation(s)
- Dylan E Cherrier
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France; Université Paris Diderot, Paris 75013, France
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France.
| |
Collapse
|
26
|
Lei AH, Xiao Q, Liu GY, Shi K, Yang Q, Li X, Liu YF, Wang HK, Cai WP, Guan YJ, Gabrilovich DI, Zhou J. ICAM-1 controls development and function of ILC2. J Exp Med 2018; 215:2157-2174. [PMID: 30049704 PMCID: PMC6080904 DOI: 10.1084/jem.20172359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are emerging as key players in the pathogenesis of allergic airway inflammation. The mechanisms regulating ILC2, however, are not fully understood. Here, we found that ICAM-1 is required for the development and function of ILC2. ICAM-1-deficient (ICAM-1-/- ) mice displayed significantly lower levels of ILC2s in the bone marrow and peripheral tissues than wild-type controls. CLP transfer and in vitro culture assays revealed that the regulation of ILC2 by ICAM-1 is cell intrinsic. Furthermore, ILC2s from ICAM-1-/- mice were functionally impaired, as indicated by the diminished production of type-2 cytokines in response to IL-33 challenge. The reduction in lung ILC2s caused a clear remission of airway inflammation in ICAM-1-/- mice after administration of papain or Alternaria alternata. We further demonstrate that ILC2 defects caused by ICAM-1 deficiency are due to ERK signaling-dependent down-regulation of GATA3 protein. Collectively, these observations identify ICAM-1 as a novel regulator of ILC2.
Collapse
Affiliation(s)
- Ai-Hua Lei
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gao-Yu Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kun Shi
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Feng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Dmitry I Gabrilovich
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- The Wistar Institute, Philadelphia, PA
- Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Schuijs MJ, Halim TYF. Group 2 innate lymphocytes at the interface between innate and adaptive immunity. Ann N Y Acad Sci 2018; 1417:87-103. [PMID: 29492980 DOI: 10.1111/nyas.13604] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Group 2 innate lymphoid cells (ILC2) are innate immune cells that respond rapidly to their environment through soluble inflammatory mediators and cell-to-cell interactions. As tissue-resident sentinels, ILC2 help orchestrate localized type 2 immune responses. These ILC2-driven type 2 responses are now recognized in diverse immune processes, different anatomical locations, and homeostatic or pathological settings. ILC2-derived cytokines and cell surface signaling molecules function as key regulators of innate and adaptive immunity. Conversely, ILC2 are governed by their environment. As such, ILC2 form an important nexus of the immune system and may present an attractive target for immune modulation in disease.
Collapse
|
28
|
Sciumè G, Shih HY, Mikami Y, O'Shea JJ. Epigenomic Views of Innate Lymphoid Cells. Front Immunol 2017; 8:1579. [PMID: 29250060 PMCID: PMC5715337 DOI: 10.3389/fimmu.2017.01579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022] Open
Abstract
The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.
Collapse
Affiliation(s)
- Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Han-Yu Shih
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | - Yohei Mikami
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | - John J O'Shea
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
29
|
Chinen J, Badran YR, Geha RS, Chou JS, Fried AJ. Advances in basic and clinical immunology in 2016. J Allergy Clin Immunol 2017; 140:959-973. [DOI: 10.1016/j.jaci.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
30
|
Abstract
Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2, and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity, and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by co-stimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease.
Collapse
Affiliation(s)
- Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| |
Collapse
|
31
|
Scheer S, Zaph C. The Lysine Methyltransferase G9a in Immune Cell Differentiation and Function. Front Immunol 2017; 8:429. [PMID: 28443098 PMCID: PMC5387087 DOI: 10.3389/fimmu.2017.00429] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
G9a (KMT1C, EHMT2) is a lysine methyltransferase (KMT) whose primary function is to di-methylate lysine 9 of histone H3 (H3K9me2). G9a-dependent H3K9me2 is associated with gene silencing and acts primarily through the recruitment of H3K9me2-binding proteins that prevent transcriptional activation. Gene repression via G9a-dependent H3K9me2 is critically required in embryonic stem (ES) cells for the development of cellular lineages by repressing expression of pluripotency factors. In the immune system, lymphoid cells such as T cells and innate lymphoid cells (ILCs) can differentiate from a naïve state into one of several effector lineages that require both activating and repressive mechanisms to maintain the correct gene expression program. Furthermore, the long-term immunity to re-infection is mediated by memory T cells, which also require specific gene expression and repression to maintain a quiescent state. In this review, we examine the molecular machinery of G9a-dependent functions, address the role of G9a in lymphoid cell differentiation and function, and identify potential functions of T cells and ILCs that may be controlled by G9a. Together, this review will highlight the dynamic nature of G9a-dependent H3K9me2 in the immune system and shed light on the nature of repressive epigenetic modifications in cellular lineage choice.
Collapse
Affiliation(s)
- Sebastian Scheer
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colby Zaph
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
32
|
Lim AI, Verrier T, Vosshenrich CA, Di Santo JP. Developmental options and functional plasticity of innate lymphoid cells. Curr Opin Immunol 2017; 44:61-68. [PMID: 28359987 DOI: 10.1016/j.coi.2017.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/13/2017] [Indexed: 01/09/2023]
Abstract
Innate lymphoid cells (ILCs) are lineage- and antigen receptor-negative lymphocytes including natural killer (NK) cells and at least three distinguishable cell subsets (ILC1, ILC2, ILC3) that rapidly produce cytokines (IFN-γ, IL-5, IL-13, IL-17A, IL-22) upon activation. As such, ILCs can act as first-line defenders in the context of infection, inflammation and cancer. Because of the strong conservation between the expression of key transcription factors that can drive signature cytokine outputs in ILCs and differentiated helper T cells, it has been proposed that ILCs represent innate counterparts of the latter. Several distinct ILC precursors (ILCP) with pan-ILC (giving rise to all ILCs) or subset-restricted potentials have been described in both mouse and man. How and where these different ILCP give rise to more mature tissue-resident ILCs remains unclear. Recently, environmental signals have been shown to epigenetically influence canonical ILC differentiation pathways, generating substantial functional plasticity. These new results suggest that while ILC differentiation may be 'fixed' in principle, it remains 'flexible' in practice. A more comprehensive knowledge in the molecular mechanisms that regulate ILC development and effector functions may allow for therapeutic manipulation of ILCs for diverse disease conditions.
Collapse
Affiliation(s)
- Ai Ing Lim
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France; INSERM U1223, 75724 Paris, France
| | - Thomas Verrier
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France; INSERM U1223, 75724 Paris, France
| | - Christian Aj Vosshenrich
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France; INSERM U1223, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France; INSERM U1223, 75724 Paris, France.
| |
Collapse
|
33
|
Zhang K, Xu X, Pasha MA, Siebel CW, Costello A, Haczku A, MacNamara K, Liang T, Zhu J, Bhandoola A, Maillard I, Yang Q. Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:1798-1803. [PMID: 28115527 DOI: 10.4049/jimmunol.1601421] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/24/2016] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying lymphocyte lineage stability and plasticity remain elusive. Recent work indicates that innate lymphoid cells (ILC) possess substantial plasticity. Whereas natural ILC2 (nILC2) produce type-2 cytokines, plastic inflammatory ILC2 (iILC2) can coproduce both type-2 cytokines and the ILC3-characteristic cytokine, IL-17. Mechanisms that elicit this lineage plasticity, and the importance in health and disease, remain unclear. In this study we show that iILC2 are potent inducers of airway inflammation in response to acute house dust mite challenge. We find that Notch signaling induces lineage plasticity of mature ILC2 and drives the conversion of nILC2 into iILC2. Acute blockade of Notch signaling abolished functional iILC2, but not nILC2, in vivo. Exposure of isolated nILC2 to Notch ligands induced Rorc expression and elicited dual IL-13/IL-17 production, converting nILC2 into iILC2. Together these results reveal a novel role for Notch signaling in eliciting ILC2 plasticity and driving the emergence of highly proinflammatory innate lymphocytes.
Collapse
Affiliation(s)
- Kangning Zhang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Xingyuan Xu
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208.,Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Muhammad Asghar Pasha
- Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY 12203
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080
| | - Angelica Costello
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Angela Haczku
- Translational Lung Biology Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA 95616
| | - Katherine MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ivan Maillard
- Life Sciences Institute, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
34
|
Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 2016; 13:711-721. [PMID: 27818489 PMCID: PMC5101451 DOI: 10.1038/cmi.2016.58] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|