1
|
Hu J, Hu Y, Zhang X, Zhang J, Zhou Y, Wang X, Wu W, Chen J, Han Y. Tenacissoside G reverses paclitaxel resistance by inhibiting Src/PTN/P-gp signaling axis activation in ovarian cancer cells. J Nat Med 2025; 79:621-638. [PMID: 40195205 DOI: 10.1007/s11418-025-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/17/2025] [Indexed: 04/09/2025]
Abstract
Ovarian cancer (OC) is the most common malignant gynecologic tumor, with the highest mortality rate among female reproductive system cancers. Resistance to chemotherapy drugs, which often develops after long-term use, is a major cause of treatment failure. In recent years, traditional Chinese medicine has been widely used in the treatment of tumor for their advantages in improving the efficacy of chemotherapy and alleviating the toxic side effects. Tenacissoside G (Tsd-G), as one of the main active ingredients of Marsdenia tenacissima, exhibits anti-tumor effects. However, its impact on ovarian cancer is not well understood. To assess the role and mechanism of Tsd-G in reversing paclitaxel (PTX) resistance, the reversal fold of Tsd-G in combination with PTX on OC PTX-resistant (A2780/T) cells was determined using CCK-8 assay. The apoptosis level and migration ability of A2780/T cells after 24 h treatment with Tsd-G and PTX were assessed by Hoechst 33,342, flow cytometry, and wound healing assay. Western Blot and Src overexpression plasmid were used to explore the relationship between Src and PTX resistance. The relationship between Src expression and human OC was analyzed by gene expression database. The effect of Tsd-G on P-gp activity was detected by flow cytometry. Western blot and RT-PCR experiments were performed to detect the differences in mRNA and protein expression of Src/PTN/P-gp signaling axis to validate the mechanism of Tsd-G in reversing the resistance to PTX in ovarian cancer. The results showed that Tsd-G reverses PTX resistance in ovarian cancer cells by regulating cell proliferation, cell cycle, inducing apoptosis, and inhibiting migration. The mechanism might associate with the inhibition of Src expression and phosphorylation activation, which in turn inhibits the expression and activity of downstream PTN and P-gp. This study provides a new idea for the treatment of PTX-resistant OC patients and provides theoretical support for revealing the anti-ovarian cancer active ingredients in Marsdenia tenacissima.
Collapse
Affiliation(s)
- Jiudong Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Yujie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Xiangqi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Jingxian Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Yangyun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Xiaohe Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China
| | - Yonglong Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
2
|
Tang F, Zhu Y, Shen J, Yuan B, He X, Tian Y, Weng L, Sun L. CD44 + cells enhance pro-tumor stroma in the spatial landscape of colorectal cancer leading edge. Br J Cancer 2025; 132:703-715. [PMID: 40069574 PMCID: PMC11997037 DOI: 10.1038/s41416-025-02968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The heterogeneity of tumors significantly impacts on colorectal cancer (CRC) progression. However, the influence of this heterogeneity on the spatial architecture of CRC remains largely unknown. METHODS Spatial transcriptomic (ST) analysis of AOM/DSS-induced colorectal cancer (CRC), integrated with single-cell RNA sequencing, generated a comprehensive spatial atlas of CRC. Pseudotime trajectory, stemness evaluation, and cell-cell communication analyses explored how CD44+ tumor cells at the leading edge remodel the tumor microenvironment (TME). In vitro experiments and immunofluorescence staining of clinical samples validated pleiotrophin (PTN) signaling in promoting cancer-associated fibroblasts (CAFs) phenotypic transition and CRC progression. RESULTS Our findings revealed a distinctive layered ring-like structure within CRC tissues, where CD44+ tumor cells exhibiting high stemness were positioned at the tumor's leading edge. Inflammatory CAFs (iCAFs)-like, myofibroblastic CAFs (myCAFs)-like cells and pro-tumorigenic neutrophils primarily located at the tumor edge, in proximity to CD44+ tumor cells. CD44+ tumor cells then triggered the phenotypic transition of CAFs into iCAF-like and myCAF-like cells through PTN signaling. CONCLUSIONS Our results provide distinctive insights into how tumor heterogeneity reshapes the TME at the leading edge of tumor, thereby promoting CRC progression.
Collapse
Affiliation(s)
- Feiyu Tang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- Center for Biotherapy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Shen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Bowen Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yuxi Tian
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Weng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China.
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
3
|
Kim KT, Lee MH, Shin SJ, Cho I, Kuk JC, Yun J, Choi YY. Decorin as a key marker of desmoplastic cancer-associated fibroblasts mediating first-line immune checkpoint blockade resistance in metastatic gastric cancer. Gastric Cancer 2025; 28:12-26. [PMID: 39520589 DOI: 10.1007/s10120-024-01567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Gastric cancer (GC) remains a significant cause of cancer-related mortality worldwide. Despite the transformative impact of immune checkpoint blockade (ICB) therapies across various cancers, only a minority of patients with metastatic GC (mGC) benefit, emphasizing the urgent need for precise biomarkers to predict therapeutic responses and optimize patient selection. METHODS In this multi-omics study, we conducted whole exome and transcriptome sequencing on 12 tumors from mGC patients treated with nivolumab as first-line therapy. To validate our findings, we performed whole transcriptome sequencing on 17 additional tumors and analyzed 45 tumors from public dataset (PRJEB25780) of patients who received ICB therapy as second or third-line treatment. Comprehensive multi-omics analyses were conducted using single-cell RNA sequencing (n = 5, GSE167297) and spatial transcriptome sequencing (n = 2, independent internal dataset). RESULTS ICB-sensitive tumors exhibited robust activation of the interferon response pathway, while ICB-resistant tumors displayed epithelial-mesenchymal transition signatures. Intriguingly, at the single-cell level, genes associated with ICB sensitivity were predominantly expressed in immune cells, whereas genes associated with resistance were primarily found in cancer-associated fibroblasts (CAFs), particularly the desmoplastic CAF (dCAF) subtype. We identified DCN as a hallmark dCAF marker, and high DCN expression was inversely correlated with PD-L1 levels, ICB resistance, and poor prognosis in mGC (log-rank p = 0.027). CONCLUSION This study elucidates the critical influence of the tumor microenvironment, specifically dCAFs, in mediating ICB resistance in mGC. Our findings highlight DCN as a representative marker for dCAF and a promising negative predictive biomarker for ICB response. These findings highlight the complex stromal-immune interactions and open avenues for personalized treatment for mGC.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry, Seoul National University, Seoul, Korea
- Dental Research Institute and Dental Multi-omics Center, Seoul National University, Seoul, South Korea
| | - Min Hee Lee
- Department of Radiology, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - In Cho
- Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jung Cheol Kuk
- Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jina Yun
- Department of Medicine, Division of Hematology/Oncology, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Yoon Young Choi
- Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
4
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
5
|
Zhang M, Zhou K, Wang Z, Liu T, Stevens LE, Lynce F, Chen WY, Peng S, Xie Y, Zhai D, Chen Q, Shi Y, Shi H, Yuan Z, Li X, Xu J, Cai Z, Guo J, Shao N, Lin Y. A Subpopulation of Luminal Progenitors Secretes Pleiotrophin to Promote Angiogenesis and Metastasis in Inflammatory Breast Cancer. Cancer Res 2024; 84:1781-1798. [PMID: 38507720 PMCID: PMC11148543 DOI: 10.1158/0008-5472.can-23-2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in patients with IBC, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for cross-talk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC. SIGNIFICANCE Nonmalignant luminal progenitor cells expressing pleiotrophin promote angiogenesis by activating NRP1 and induce a prometastatic tumor microenvironment in inflammatory breast cancer, providing potential therapeutic targets for this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wendy Y Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 427] [Impact Index Per Article: 427.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Ikhlas M, Ferianto D, Syamsu SA, Ganda IJ, Smaradania N, Sampepajung E, Anggita CA, Faruk M. Pleiotrophin serum level and metastasis occurrence in breast cancer patients. Breast Dis 2024; 43:93-98. [PMID: 38701136 PMCID: PMC11091641 DOI: 10.3233/bd-249003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Breast cancer (BC) cases in Makassar, Indonesia, are on the rise, with 2723 cases recorded in 2018. Tumor cells in the blood indicate metastasis, emphasizing the need for early diagnosis and monitoring. Pleiotrophin (PTN) is associated with various human malignancies, and recent studies suggest a correlation between PTN expression and advanced BC stages; therefore, PTN could serve as an independent predictor of metastasis. This study aimed to determine the correlation between serum PTN level, histopathological grading, and metastasis occurrence in BC patients in Makassar, Indonesia. METHODS This study used an observational cross-sectional design. Pleiotrophin serum levels were examined using enzyme-linked immunosorbent assays. This study used a t-test and ROC curve analysis for the statistical tests. RESULTS Of the 64 samples used in this study, metastasis was present in 26 cases and absent in 38 samples. The mean PTN serum levels in metastatic and non-metastatic breast cancer patients were 4.311 and 1.253, respectively. The PTN receiver operating characteristic curve showed an area under the curve of 2.47 ng/dL, which was statistically significant (p < 0.001). A significant relationship was found between PTN level and metastasis (p < 0.001). The correlation coefficient was 0.791, indicating a positive correlation. CONCLUSION This study revealed that the serum PTN level among breast cancer patients had a cut-off value of 2.47 ng/dL. The research established a clear correlation between PTN level and metastasis occurrence in breast cancer patients, indicating a higher likelihood of distant metastasis with elevated PTN concentration.
Collapse
Affiliation(s)
- Muhamad Ikhlas
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
- Faculty of Medicine, Universitas Alkhairaat, Palu, Indonesia
| | - Djonny Ferianto
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Salman Ardi Syamsu
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Idham Jaya Ganda
- Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Nilam Smaradania
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Elridho Sampepajung
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | | | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
8
|
Sebastian A, Martin KA, Peran I, Hum NR, Leon NF, Amiri B, Wilson SP, Coleman MA, Wheeler EK, Byers SW, Loots GG. Loss of Cadherin-11 in pancreatic ductal adenocarcinoma alters tumor-immune microenvironment. Front Oncol 2023; 13:1286861. [PMID: 37954069 PMCID: PMC10639148 DOI: 10.3389/fonc.2023.1286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the top five deadliest forms of cancer with very few treatment options. The 5-year survival rate for PDAC is 10% following diagnosis. Cadherin 11 (Cdh11), a cell-to-cell adhesion molecule, has been suggested to promote tumor growth and immunosuppression in PDAC, and Cdh11 inhibition significantly extended survival in mice with PDAC. However, the mechanisms by which Cdh11 deficiency influences PDAC progression and anti-tumor immune responses have yet to be fully elucidated. To investigate Cdh11-deficiency induced changes in PDAC tumor microenvironment (TME), we crossed p48-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ (KPC) mice with Cdh11+/- mice and performed single-cell RNA sequencing (scRNA-seq) of the non-immune (CD45-) and immune (CD45+) compartment of KPC tumor-bearing Cdh11 proficient (KPC-Cdh11+/+) and Cdh11 deficient (KPC-Cdh11+/-) mice. Our analysis showed that Cdh11 is expressed primarily in cancer-associated fibroblasts (CAFs) and at low levels in epithelial cells undergoing epithelial-to-mesenchymal transition (EMT). Cdh11 deficiency altered the molecular profile of CAFs, leading to a decrease in the expression of myofibroblast markers such as Acta2 and Tagln and cytokines such as Il6, Il33 and Midkine (Mdk). We also observed a significant decrease in the presence of monocytes/macrophages and neutrophils in KPC-Cdh11+/- tumors while the proportion of T cells was increased. Additionally, myeloid lineage cells from Cdh11-deficient tumors had reduced expression of immunosuppressive cytokines that have previously been shown to play a role in immune suppression. In summary, our data suggests that Cdh11 deficiency significantly alters the fibroblast and immune microenvironments and contributes to the reduction of immunosuppressive cytokines, leading to an increase in anti-tumor immunity and enhanced survival.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Kelly A. Martin
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Nicole F. Leon
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Beheshta Amiri
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Stephen P. Wilson
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Matthew A. Coleman
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Elizabeth K. Wheeler
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
- University of California Davis Health, Department of Orthopaedic Surgery, Sacramento, CA, United States
| |
Collapse
|