1
|
Zhang L, Zhou B, Yang J, Ren C, Luo J, Li Z, Liu Q, Huang Z, Wu Z, Jiang N. MTFR2-Mediated Fission Drives Fatty Acid and Mitochondrial Co-Transfer from Hepatic Stellate Cells to Tumor Cells Fueling Oncogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416419. [PMID: 40365837 DOI: 10.1002/advs.202416419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/17/2025] [Indexed: 05/15/2025]
Abstract
The tumor margin of hepatocellular carcinoma (HCC) is a critical zone where cancer cells invade the surrounding stroma, exhibiting unique and more invasive metabolic and migratory features compared to the tumor center, driving tumor expansion beyond the primary lesion. Studies have shown that at this critical interface, HCC cells primarily rely on fatty acid oxidation to meet their energy demands, although the underlying mechanisms remain unclear. This study demonstrates that activated hepatic stellate cells (HSCs) at the tumor margin play a pivotal role in sustaining the metabolic needs of HCC cells. Specifically, it is discovered that mitochondrial fission regulator 2 (MTFR2) in HSCs interacts with dynamin-related protein 1 (DRP1, a known mitochondrial fission machinery), preventing its lysosomal degradation, which in turn promotes mitochondrial fission. This MTFR2-driven mitochondrial fission enhances the transfer of both fatty acids and mitochondria to HCC cells, supplying essential metabolic substrates and reinforcing the mitochondrial machinery critical for tumor growth. The findings suggest that targeting MTFR2-driven mitochondrial fission may offer a novel therapeutic avenue for interfering with the metabolic crosstalk between tumor cells and the stromal niche.
Collapse
Affiliation(s)
- La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cong Ren
- Department of Medicinal Chemistry College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Qiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
He N, Zhao W, Tian W, Wu Y, Xu J, Lu Y, Chen X, Zhao H. A cellular senescence-related signature for predicting prognosis, immunotherapy response, and candidate drugs in patients treated with transarterial chemoembolization (TACE). Discov Oncol 2024; 15:271. [PMID: 38976093 PMCID: PMC11231123 DOI: 10.1007/s12672-024-01116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Cellular senescence is essential to TME development, progression, and remodeling. Few studies have examined cellular senescence in HCC after TACE. Investigating the relationship between cellular senescence, post-TACE prognosis, the TME, and immune treatment responses is crucial. METHODS We analyzed the GSE104580 dataset to identify DEGs. A cellular senescence-related signature was developed using LASSO Cox regression in the GSE14520 dataset and validated in the ICGC dataset. High- and low-risk subgroups were compared using GSVA and GSEA. Correlation studies were conducted to explore the relationship between the prognostic model, immune infiltration, immunotherapy response, and drug sensitivity. RESULTS A cellular senescence-related signature comprising FOXM1, CDK1, CHEK1, and SERPINE1 was created and validated. High-risk patients showed significantly lower OS than low-risk patients. High-risk patients had carcinogenetic pathways activated, immunosuppressive cells infiltrated, and immunomodulatory genes overexpressed. They also showed higher sensitivity to EPZ004777_1237 and MK-2206_1053 and potential benefits from GSK-3 inhibitor IX, nortriptyline, lestaurtinib, and JNK-9L. CONCLUSIONS This study constructed a cellular senescence-related signature that could be used to predict HCC patients' responses to and prognosis after TACE treatment, aiding in the development of personalized treatment plans.
Collapse
Affiliation(s)
- Ning He
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Zhao
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wenlong Tian
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Wu
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, China
| | - Yunyan Lu
- Department of Gynecology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xudong Chen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Hui Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
3
|
Yang S, Li Z, Yi J, Pan M, Cao W, Ma J, Zhang P. Nebivolol, an antihypertensive agent, has new application in inhibiting melanoma. Anticancer Drugs 2024; 35:512-524. [PMID: 38602174 PMCID: PMC11078289 DOI: 10.1097/cad.0000000000001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Indexed: 04/12/2024]
Abstract
Repurposing existing drugs for cancer therapy has become an important strategy because of its advantages, such as cost reduction, effect and safety. The present study was designed to investigate the antimelanoma effect and possible mechanisms of action of nebivolol, which is an approved and widely prescribed antihypertensive agent. In this study, we explored the effect of nebivolol on cell proliferation and cell activity in melanoma in vitro and the potential antimelanoma mechanism of nebivolol through a series of experiments, including the analysis of the effects with regard to cell apoptosis and metastasis. Furthermore, we evaluated the antimelanoma effect on xenograft tumor models and inspected the antimelanoma mechanism of nebivolol in vivo using immunohistochemical and immunofluorescence staining assays. As results in this work, in vitro , nebivolol possessed a strong activity for suppression proliferation and cell cycle arrest on melanoma. Moreover, nebivolol significantly induced cell apoptosis in melanoma through a mitochondrial-mediated endogenous apoptosis pathway. Additionally, nebivolol inhibited melanoma cell metastasis. More importantly, nebivolol exhibited significantly effective melanoma xenograft models in vivo , which related to the mechanism of apoptosis induction, proliferation inhibition, metastasis blocking and angiogenesis arrest. Overall, the data of the present study recommend that nebivolol holds great potential in application as a novel agent for the treatment of melanoma.
Collapse
Affiliation(s)
- Shuping Yang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Zhi Li
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Jiamei Yi
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| |
Collapse
|