1
|
Anwar S, Peng JL, Zahid KR, Zhou YM, Ali Q, Qiu CR. Cystic Fibrosis: Understanding Cystic Fibrosis Transmembrane Regulator Mutation Classification and Modulator Therapies. Adv Respir Med 2024; 92:263-277. [PMID: 39051188 PMCID: PMC11270331 DOI: 10.3390/arm92040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
A common life-threatening hereditary disease, Cystic Fibrosis (CF), affects primarily Caucasian infants. High sweat-salt levels are observed as a result of a single autosomal mutation in chromosome 7 that affects the critical function of the cystic fibrosis transmembrane regulator (CFTR). For establishing tailored treatment strategies, it is important to understand the broad range of CFTR mutations and their impacts on disease pathophysiology. This study thoroughly investigates the six main classes of classification of CFTR mutations based on their functional effects. Each class is distinguished by distinct molecular flaws, such as poor protein synthesis, misfolding, gating defects, conduction defects, and decreased CFTR expression at the apical membrane. Furthermore, this paper focuses on the emerging field of CFTR modulators, which intend to restore CFTR function or mitigate its consequences. These modulators, which are characterized by the mode of action and targeted mutation class, have the potential to provide personalized therapy regimens in CF patients. This review provides valuable insights into the genetic basis of CF pathology, and highlights the potential for precision medicine methods in CF therapy by thoroughly investigating CFTR mutation classification and related modulators.
Collapse
Affiliation(s)
- Saba Anwar
- Centre for Applied Molecular Biology, University of the Punjab Lahore, Lahore 53700, Pakistan;
| | - Jin-Liang Peng
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| | - Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianaapolis, IN 46202, USA;
| | - Yu-Ming Zhou
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Chong-Rong Qiu
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou 341000, China; (J.-L.P.); (Y.-M.Z.)
| |
Collapse
|
2
|
Yeh HI, Sutcliffe KJ, Sheppard DN, Hwang TC. CFTR Modulators: From Mechanism to Targeted Therapeutics. Handb Exp Pharmacol 2024; 283:219-247. [PMID: 35972584 DOI: 10.1007/164_2022_597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.
Collapse
Affiliation(s)
- Han-I Yeh
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Tzyh-Chang Hwang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Linsdell P, Irving CL, Cowley EA. Functionally Additive Fixed Positive and Negative Charges in the CFTR Channel Pore Control Anion Binding and Conductance. J Biol Chem 2022; 298:101659. [PMID: 35101441 PMCID: PMC8881524 DOI: 10.1016/j.jbc.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ion channels use charged amino-acid residues to attract oppositely charged permeant ions into the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel, a number of arginine and lysine residues have been shown to be important for Cl− permeation. Among these, two in close proximity in the pore—Lys95 and Arg134—are indispensable for anion binding and high Cl− conductance, suggesting that high positive charge density is required for pore function. Here we used mutagenesis and functional characterization to show that a nearby pore-lining negatively charged residue (Glu92) plays a functionally additive role with these two positive charges. While neutralization of this negative charge had little effect on anion binding or Cl− conductance, such neutralization was able to reverse the detrimental effects of removing the positive charge at either Lys95 or Arg134, as well as the similar effects of introducing a negative charge at a neighboring residue (Ser1141). Furthermore, neutralization of Glu92 greatly increased the susceptibility of the channel to blockage by divalent S2O32− anions, mimicking the effect of introducing additional positive charge in this region; this effect was reversed by concurrent neutralization of either Lys95 or Arg134. Across a panel of mutant channels that introduced or removed fixed charges at these four positions, we found that many pore properties are dependent on the overall charge or charge density. We propose that the CFTR pore uses a combination of positively and negatively charged residues to optimize the anion binding and Cl− conductance properties of the channel.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Christina L Irving
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth A Cowley
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Linsdell P, Irving CL, Cowley EA, El Hiani Y. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance. Cell Mol Life Sci 2021; 78:5213-5223. [PMID: 34023918 PMCID: PMC11073087 DOI: 10.1007/s00018-021-03859-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022]
Abstract
Positively charged amino acid side-chains play important roles in anion binding and permeation through the CFTR chloride channel. One pore-lining lysine residue in particular (K95) has been shown to be indispensable for anion binding, conductance, and selectivity. Here, we use functional investigation of CFTR to show that a nearby arginine (R134) plays a functionally analogous role. Removal of this positive charge (in the R134Q mutant) drastically reduces single-channel conductance, weakens binding of both permeant and blocking anions, and abolishes the normal anion conductance selectivity pattern. Each of these functional effects was reversed by a second-site mutation (S1141K) that introduces an ectopic positive charge to a nearby pore-lining residue. Substituted cysteine accessibility experiments confirm that R134-but not nearby residues in the same transmembrane helix-is accessible within the pore lumen. These results suggest that K95 and R134, which are very close together within the inner vestibule of the pore, play analogous, important roles, and that both are required for the normal anion binding and anion conductance properties of the pore. Nevertheless, that fact that both positive charges can be "transplanted" to other sites in the inner vestibule with little effect on channel permeation properties indicates that it is the overall number of charges-rather than their exact locations-that controls pore function.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| | - Christina L Irving
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
6
|
Farkas B, Tordai H, Padányi R, Tordai A, Gera J, Paragi G, Hegedűs T. Discovering the chloride pathway in the CFTR channel. Cell Mol Life Sci 2020; 77:765-778. [PMID: 31327045 PMCID: PMC7039865 DOI: 10.1007/s00018-019-03211-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF), a lethal monogenic disease, is caused by pathogenic variants of the CFTR chloride channel. The majority of CF mutations affect protein folding and stability leading overall to diminished apical anion conductance of epithelial cells. The recently published cryo-EM structures of full-length human and zebrafish CFTR provide a good model to gain insight into structure-function relationships of CFTR variants. Although, some of the structures were determined in the phosphorylated and ATP-bound active state, none of the static structures showed an open pathway for chloride permeation. Therefore, we performed molecular dynamics simulations to generate a conformational ensemble of the protein and used channel detecting algorithms to identify conformations with an opened channel. Our simulations indicate a main intracellular entry at TM4/6, a secondary pore at TM10/12, and a bottleneck region involving numerous amino acids from TM1, TM6, and TM12 in accordance with experiments. Since chloride ions entered the pathway in our equilibrium simulations, but did not traverse the bottleneck region, we performed metadynamics simulations, which revealed two possible exits. One of the chloride ions exits includes hydrophobic lipid tails that may explain the lipid-dependency of CFTR function. In summary, our in silico study provides a detailed description of a potential chloride channel pathway based on a recent cryo-EM structure and may help to understand the gating of the CFTR chloride channel, thus contributing to novel strategies to rescue dysfunctional mutants.
Collapse
Affiliation(s)
- Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Tordai
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Gera
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic System Research Group, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Physics, University of Pécs, Pecs, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
7
|
Yeh JT, Hwang TC. Positional effects of premature termination codons on the biochemical and biophysical properties of CFTR. J Physiol 2019; 598:517-541. [PMID: 31585024 DOI: 10.1113/jp278418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Biochemical and biophysical characterizations of three nonsense mutations of cystic fibrosis transmembrane conductance regulator (CFTR) associated with a severe form of cystic fibrosis (CF) reveal the importance and heterogenous effects of the position of the premature termination codon (PTC) on the CFTR protein function. Electrophysiological studies of W1282X-CFTR, whose PTC is closer to the C-terminus of CFTR, suggest the presence of both C-terminus truncated CFTR proteins that are poorly functional and read-through, full-length products. For G542X- and E60X-CFTR, the only mechanism capable of generating functional proteins is the read-through, but the outcome of read-through products is highly variable depending on the interplay between the missense mutation caused by the read-through and the structural context of the protein. Pharmacological studies of these three PTCs with various CFTR modulators suggest position-dependent therapeutic strategies for these disease-inflicting mutations. ABSTRACT About one-third of genetic diseases and cancers are caused by the introduction of premature termination codons (PTCs). In theory, the location of the PTC in a gene determines the alternative mechanisms of translation, including premature cessation or reinitiation of translation, and read-through, resulting in differential effects on protein integrity. In this study, we used CFTR as a model system to investigate the positional effect of the PTC because of its well-understood structure-function relationship and pathophysiology. The characterization of three PTC mutations, E60X-, G542X- and W1282X-CFTR revealed heterogenous effects of these PTCs on CFTR function. The W1282X mutation results in both C-terminus truncated and read-through proteins that are partially or fully functional. In contrast, only the read-through protein is functional with E60X- and G542X-CFTR, although abundant N-terminus truncated proteins due to reinitiation of translation were detected in E60X-CFTR. Single-channel studies of the read-through proteins of E60X- and G542X-CFTR demonstrated that both mutations have a single-channel amplitude similar to wild type (WT), and good responses to high-affinity ATP analogues, suggesting intact ion permeation pathways and nucleotide binding domains (NBDs), albeit with reduced open probability (Po ). The comparison of the Po of these mutations with the proposed missense mutations revealed potential identities of the read-through products. Importantly, a majority of the functional protein studied responds to CFTR modulators like GLPG1837 and Lumacaftor. These results not only expand current understanding of the molecular (patho)physiology of CFTR, but also infer therapeutic strategies for different PTC mutations at large.
Collapse
Affiliation(s)
- Jiunn-Tyng Yeh
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tzyh-Chang Hwang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
8
|
Corradi V, Gu RX, Vergani P, Tieleman DP. Structure of Transmembrane Helix 8 and Possible Membrane Defects in CFTR. Biophys J 2019; 114:1751-1754. [PMID: 29694855 PMCID: PMC5936993 DOI: 10.1016/j.bpj.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that regulates the flow of anions across epithelia. Mutations in CFTR cause cystic fibrosis. CFTR belongs to the ATP-binding cassette transporter superfamily, and gating is controlled by phosphorylation and ATP binding and hydrolysis. Recently obtained ATP-free and ATP-bound structures of zebrafish CFTR revealed an unwound segment of transmembrane helix (TM) 8, which appears to be a unique feature of CFTR not present in other ATP-binding cassette transporter structures. Here, using μs-long molecular dynamics simulations, we investigate the interactions formed by this TM8 segment with nearby helices in both ATP-free and ATP-bound states. We highlight ATP-dependent interactions as well as the structural role of TM8 in maintaining the functional architecture of the pore via interactions common to both the ATP-bound and ATP-free state. The results of the molecular dynamics simulations are discussed in the context of the gating mechanism of CFTR.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Negoda A, Hogan MS, Cowley EA, Linsdell P. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Cell Mol Life Sci 2019; 76:2411-2423. [PMID: 30758641 PMCID: PMC11105405 DOI: 10.1007/s00018-019-03043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
Our molecular understanding of the cystic fibrosis transmembrane conductance regulator (CFTR)-the chloride channel that is mutated in cystic fibrosis-has been greatly enhanced by a number of recent atomic-level structures of the protein in different conformations. One surprising aspect of these structures was the finding that the eighth of CFTR's 12 membrane-spanning segments (TM8) appeared close to the channel pore. Although functional evidence supports a role for other TMs in forming the pore, such a role for TM8 has not previously been reported. Here, we use patch-clamp recording to investigate the functional role of TM8. Using substituted cysteine accessibility mutagenesis, we find that three amino acid side-chains in TM8 (Y913, Y914, and Y917) are exposed to the extracellular, but not the intracellular, solution. Cysteine cross-linking experiments suggest that Y914 and Y917 are in close proximity to L102 (TM1) and F337 (TM6), respectively, suggesting that TM8 contributes to the narrow selectivity filter region of the pore. Different amino acid substitutions suggest that Y914, and to a lesser extent Y917, play important roles in controlling anion flux through the open channel. Furthermore, substitutions that reduce side-chain volume at Y917 severely affect channel gating, resulting in a channel with an extremely unstable open state. Our results suggest that pore-lining TM8 is among the most important TMs controlling the permeation phenotype of the CFTR channel, and also that movement of TM8 may be critically involved in channel gating.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Mairin S Hogan
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
10
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
11
|
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations. PLoS One 2018; 13:e0209862. [PMID: 30596737 PMCID: PMC6312236 DOI: 10.1371/journal.pone.0209862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
Collapse
|
12
|
Negoda A, Cowley EA, El Hiani Y, Linsdell P. Conformational change of the extracellular parts of the CFTR protein during channel gating. Cell Mol Life Sci 2018; 75:3027-3038. [PMID: 29441426 PMCID: PMC11105745 DOI: 10.1007/s00018-018-2777-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis can be treated by potentiators, drugs that interact directly with the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to increase its open probability. These substances likely target key conformational changes occurring during channel opening and closing, however, the molecular bases of these conformational changes, and their susceptibility to manipulation are poorly understood. We have used patch clamp recording to identify changes in the three-dimensional organization of the extracellularly accessible parts of the CFTR protein during channel opening and closing. State-dependent formation of both disulfide bonds and Cd2+ bridges occurred for pairs of cysteine side-chains introduced into the extreme extracellular ends of transmembrane helices (TMs) 1, 6, and 12. Between each of these three TMs, we found that both disulfide bonds and metal bridges formed preferentially or exclusively in the closed state and that these inter-TM cross-links stabilized the closed state. These results indicate that the extracellular ends of these TMs are close together when the channel is closed and that they separate from each other when the channel opens. These findings identify for the first time key conformational changes in the extracellular parts of the CFTR protein that can potentially be manipulated to control channel activity.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
13
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
14
|
Li MS, Cowley EA, El Hiani Y, Linsdell P. Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore. J Biol Chem 2018; 293:5649-5658. [PMID: 29475947 DOI: 10.1074/jbc.ra117.001373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Indexed: 12/15/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that apparently has evolved from an ancestral active transporter. Key to the CFTR's switch from pump to channel function may have been the appearance of one or more "lateral portals." Such portals connect the cytoplasm to the transmembrane channel pore, allowing a continuous pathway for the electrodiffusional movement of Cl- ions. However, these portals remain the least well-characterized part of the Cl- transport pathway; even the number of functional portals is uncertain, and if multiple portals do exist, their relative functional contributions are unknown. Here, we used patch-clamp recording to identify the contributions of positively charged amino acid side chains located in CFTR's cytoplasmic transmembrane extensions to portal function. Mutagenesis-mediated neutralization of several charged side chains reduced single-channel Cl- conductance. However, these same mutations differentially affected channel blockade by cytoplasmic suramin and Pt(NO2)42- anions. We considered and tested several models by which the contribution of these positively charged side chains to one or more independent or non-independent portals to the pore could affect Cl- conductance and interactions with blockers. Overall, our results suggest the existence of a single portal that is lined by several positively charged side chains that interact electrostatically with both Cl- and blocking anions. We further propose that mutations at other sites indirectly alter the function of this single portal. Comparison of our functional results with recent structural information on CFTR completes our picture of the overall molecular architecture of the Cl- permeation pathway.
Collapse
Affiliation(s)
- Man-Song Li
- From the Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Elizabeth A Cowley
- From the Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- From the Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul Linsdell
- From the Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
15
|
Gao X, Hwang TC. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. J Gen Physiol 2017; 147:407-22. [PMID: 27114613 PMCID: PMC4845689 DOI: 10.1085/jgp.201511557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
CFTR is a chloride channel and a member of the ABC transporter superfamily; however, its structure is unknown. By making a series of cysteine mutants, Gao and Hwang show that CFTR lacks the twofold pseudo-symmetry seen in the permeation pathway of bone fide ABC transporters. The structural composition of CFTR’s anion permeation pathway has been proposed to consist of a short narrow region, flanked by two wide inner and outer vestibules, based on systematic cysteine scanning studies using thiol-reactive probes of various sizes. Although these studies identified several of the transmembrane segments (TMs) as pore lining, the exact spatial relationship between pore-lining elements remains under debate. Here, we introduce cysteine pairs in several key pore-lining positions in TM1, 6, and 12 and use Cd2+ as a probe to gauge the spatial relationship of these residues within the pore. We find that inhibition of single cysteine CFTR mutants, such as 102C in TM1 or 341C in TM6, by intracellular Cd2+ is readily reversible upon removal of the metal ion. However, the inhibitory effect of Cd2+ on the double mutant 102C/341C requires the chelating agent dithiothreitol (DTT) for rapid reversal, indicating that 102C and 341C are close enough to the internal edge of the narrow region to coordinate one Cd2+ ion between them. We observe similar effects of extracellular Cd2+ on TM1/TM6 cysteine pairs 106C/337C, 107C/337C, and 107C/338C, corroborating the idea that these paired residues are physically close to each other at the external edge of the narrow region. Although these data paint a picture of relatively symmetrical contributions to CFTR’s pore by TM1 and TM6, introducing cysteine pairs between TM6 and TM12 (348C/1141C, 348C/1144C, and 348C/1145C) or between TM1 and TM12 (95C/1141C) yields results that contest the long-held principle of twofold pseudo-symmetry in the assembly of ABC transporters’ TMs. Collectively, these findings not only advance our current understanding of the architecture of CFTR’s pore, but could serve as a guide for refining computational models of CFTR by imposing physical constraints among pore-lining residues.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 Department of Biological Engineering, University of Missouri, Columbia, MO 65211 Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
16
|
Das J, Aleksandrov AA, Cui L, He L, Riordan JR, Dokholyan NV. Transmembrane helical interactions in the CFTR channel pore. PLoS Comput Biol 2017. [PMID: 28640808 PMCID: PMC5501672 DOI: 10.1371/journal.pcbi.1005594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF). Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF) and develop an inward (IWF) facing model employing an integrated experimental-molecular dynamics simulation (200 ns) approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs) of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.
Collapse
Affiliation(s)
- Jhuma Das
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrei A. Aleksandrov
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liying Cui
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JRR); (NVD)
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JRR); (NVD)
| |
Collapse
|
17
|
Zhang Z, Chen J. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator. Cell 2017; 167:1586-1597.e9. [PMID: 27912062 DOI: 10.1016/j.cell.2016.11.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Zhe Zhang
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Negoda A, El Hiani Y, Cowley EA, Linsdell P. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1049-1058. [DOI: 10.1016/j.bbamem.2017.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/20/2017] [Indexed: 12/15/2022]
|
19
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
20
|
Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017; 74:67-83. [PMID: 27699452 PMCID: PMC11107662 DOI: 10.1007/s00018-016-2389-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Abstract
The main function of the cystic fibrosis transmembrane conductance regulator (CFTR) is as an ion channel for the movement of small anions across epithelial cell membranes. As an ion channel, CFTR must form a continuous pathway across the cell membrane-referred to as the channel pore-for the rapid electrodiffusional movement of ions. This review summarizes our current understanding of the architecture of the channel pore, as defined by electrophysiological analysis and molecular modeling studies. This includes consideration of the characteristic functional properties of the pore, definition of the overall shape of the entire extent of the pore, and discussion of how the molecular structure of distinct regions of the pore might control different facets of pore function. Comparisons are drawn with closely related proteins that are not ion channels, and also with structurally unrelated proteins with anion channel function. A simple model of pore function is also described.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
21
|
Wang G, Linsley R, Norimatsu Y. External Zn2+binding to cysteine-substituted cystic fibrosis transmembrane conductance regulator constructs regulates channel gating and curcumin potentiation. FEBS J 2016; 283:2458-75. [DOI: 10.1111/febs.13752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Pharmacology; Oregon Health & Sciences University; Portland OR USA
- Department of Drug Research and Development; Institute of Biophysical Medico-chemistry; Reno NV USA
- Department of Physiology and Membrane Biology; University of California School of Medicine; Davis CA USA
| | | | - Yohei Norimatsu
- Department of Physiology; Kirksville College of Osteopathic Medicine; A.T. Still University; Kirksville MO USA
| |
Collapse
|
22
|
El Hiani Y, Negoda A, Linsdell P. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore. Cell Mol Life Sci 2016; 73:1917-25. [PMID: 26659082 PMCID: PMC11108287 DOI: 10.1007/s00018-015-2113-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
23
|
Qian F, Liu L, Liu Z, Lu C. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions. Physiol Res 2016; 65:505-15. [PMID: 27070741 DOI: 10.33549/physiolres.933143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, there is no direct evidence clearly illustrating the involvement of these transmembrane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of co-mutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co-mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provided functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter.
Collapse
Affiliation(s)
- F Qian
- Laboratory of Neuronal Network and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei province, China.
| | | | | | | |
Collapse
|
24
|
Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:13-32. [PMID: 27311317 DOI: 10.1007/5584_2016_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.
Collapse
|
25
|
Sorum B, Czégé D, Csanády L. Timing of CFTR pore opening and structure of its transition state. Cell 2015; 163:724-33. [PMID: 26496611 DOI: 10.1016/j.cell.2015.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/25/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
In CFTR, the chloride ion channel mutated in cystic fibrosis (CF) patients, pore opening is coupled to ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) and closure to dimer disruption following ATP hydrolysis. CFTR opening rate, unusually slow because of its high-energy transition state, is further slowed by CF mutation ΔF508. Here, we exploit equilibrium gating of hydrolysis-deficient CFTR mutant D1370N and apply rate-equilibrium free-energy relationship analysis to estimate relative timing of opening movements in distinct protein regions. We find clear directionality of motion along the longitudinal protein axis and identify an opening transition-state structure with the NBD dimer formed but the pore still closed. Thus, strain at the NBD/pore-domain interface, the ΔF508 mutation locus, underlies the energetic barrier for opening. Our findings suggest a therapeutic opportunity to stabilize this transition-state structure pharmacologically in ΔF508-CFTR to correct its opening defect, an essential step toward restoring CFTR function.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Medical Biochemistry, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary; MTA-SE Ion Channel Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary
| | - Dávid Czégé
- MTA-SE Ion Channel Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary; MTA-SE Ion Channel Research Group, Semmelweis University, Tűzoltó u. 37-47, Budapest 1094, Hungary.
| |
Collapse
|
26
|
Corradi V, Vergani P, Tieleman DP. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS. J Biol Chem 2015; 290:22891-906. [PMID: 26229102 PMCID: PMC4645605 DOI: 10.1074/jbc.m115.665125] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of "rational" approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287-288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287-288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.
Collapse
Affiliation(s)
- Valentina Corradi
- From the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D Peter Tieleman
- From the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| |
Collapse
|
27
|
El Hiani Y, Linsdell P. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. J Biol Chem 2015; 290:15855-15865. [PMID: 25944907 DOI: 10.1074/jbc.m115.656181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/19/2022] Open
Abstract
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
28
|
Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 2015; 72:1377-403. [PMID: 25287046 PMCID: PMC11113974 DOI: 10.1007/s00018-014-1749-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
In absence of experimental 3D structures, several homology models, based on ABC exporter 3D structures, have provided significant insights into the molecular mechanisms underlying the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel whose defects are associated with cystic fibrosis (CF). Until now, these models, however, did not furnished much insights into the continuous way that ions could follow from the cytosol to the extracellular milieu in the open form of the channel. Here, we have built a refined model of CFTR, based on the outward-facing Sav1866 experimental 3D structure and integrating the evolutionary and structural information available today. Molecular dynamics simulations revealed significant conformational changes, resulting in a full-open channel, accessible from the cytosol through lateral tunnels displayed in the long intracellular loops (ICLs). At the same time, the region of nucleotide-binding domain 1 in contact with one of the ICLs and carrying amino acid F508, the deletion of which is the most common CF-causing mutation, was found to adopt an alternative but stable position. Then, in a second step, this first stable full-open conformation evolved toward another stable state, in which only a limited displacement of the upper part of the transmembrane helices leads to a closure of the channel, in a conformation very close to that adopted by the Atm1 ABC exporter, in an inward-facing conformation. These models, supported by experimental data, provide significant new insights into the CFTR structure-function relationships and into the possible impact of CF-causing mutations.
Collapse
Affiliation(s)
- Jean-Paul Mornon
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| | - Slavica Jonic
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| |
Collapse
|
29
|
Abstract
Experimental and computational studies have painted a picture of the chloride permeation pathway in cystic fibrosis transmembrane conductance regulator (CFTR) as a short narrow tunnel flanked by wider inner and outer vestibules. Although these studies also identified a number of transmembrane segments (TMs) as pore-lining, the exact location of CFTR's gate(s) remains unknown. Here, using a channel-permeant probe, [Au(CN)2](-), we provide evidence that CFTR bears a gate that coincides with the predicted narrow section of the pore defined as residues 338-341 in TM6. Specifically, cysteines introduced cytoplasmic to the narrow region (i.e., positions 344 in TM6 and 1148 in TM12) can be modified by intracellular [Au(CN)2](-) in both open and closed states, corroborating the conclusion that the internal vestibule does not harbor a gate. However, cysteines engineered to positions external to the presumed narrow region (e.g., 334, 335, and 337 in TM6) are all nonreactive toward cytoplasmic [Au(CN)2](-) in the absence of ATP, whereas they can be better accessed by extracellular [Au(CN)2](-) when the open probability is markedly reduced by introducing a second mutation, G1349D. As [Au(CN)2](-) and chloride ions share the same permeation pathway, these results imply a gate is situated between amino acid residues 337 and 344 along TM6, encompassing the very segment that may also serve as the selectivity filter for CFTR. The unique position of a gate in the middle of the ion translocation pathway diverges from those seen in ATP-binding cassette (ABC) transporters and thus distinguishes CFTR from other members of the ABC transporter family.
Collapse
|
30
|
Qian F, Li T, Yang F, Liu L. Stoichiometry and novel gating mechanism within the cystic fibrosis transmembrane conductance regulator channel. Exp Physiol 2014; 99:1611-23. [DOI: 10.1113/expphysiol.2014.081034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Feng Qian
- Department of Medical Function; School of Medicine; Yangtze University; Jingzhou Hubei Province 434023 China
| | - Tao Li
- Department of Biology; College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua Zhejiang Province 321004 China
| | - Fei Yang
- Department of Medical Function; School of Medicine; Yangtze University; Jingzhou Hubei Province 434023 China
| | - Lian Liu
- Department of Medical Function; School of Medicine; Yangtze University; Jingzhou Hubei Province 434023 China
| |
Collapse
|
31
|
El Hiani Y, Linsdell P. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis. Biochem Cell Biol 2014; 92:481-8. [PMID: 25367045 DOI: 10.1139/bcb-2014-0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | |
Collapse
|
32
|
El Hiani Y, Linsdell P. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 2014; 289:28149-59. [PMID: 25143385 DOI: 10.1074/jbc.m114.593103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd(2+) bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd(2+) bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd(2+) bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd(2+) bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd(2+) bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close.
Collapse
Affiliation(s)
- Yassine El Hiani
- From the Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul Linsdell
- From the Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
33
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
34
|
State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore. Pflugers Arch 2014; 466:2243-55. [DOI: 10.1007/s00424-014-1501-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023]
|
35
|
Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World J Biol Chem 2014; 5:26-39. [PMID: 24600512 PMCID: PMC3942540 DOI: 10.4331/wjbc.v5.i1.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel causes cystic fibrosis, while inappropriate activity of this channel occurs in secretory diarrhea and polycystic kidney disease. Drugs that interact directly with CFTR are therefore of interest in the treatment of a number of disease states. This review focuses on one class of small molecules that interacts directly with CFTR, namely inhibitors that act by directly blocking chloride movement through the open channel pore. In theory such compounds could be of use in the treatment of diarrhea and polycystic kidney disease, however in practice all known substances acting by this mechanism to inhibit CFTR function lack either the potency or specificity for in vivo use. Nevertheless, this theoretical pharmacological usefulness set the scene for the development of more potent, specific CFTR inhibitors. Biophysically, open channel blockers have proven most useful as experimental probes of the structure and function of the CFTR chloride channel pore. Most importantly, the use of these blockers has been fundamental in developing a functional model of the pore that includes a wide inner vestibule that uses positively charged amino acid side chains to attract both permeant and blocking anions from the cell cytoplasm. CFTR channels are also subject to this kind of blocking action by endogenous anions present in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physiological control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR channel structure and function, and of how CFTR activity is controlled by its local environment.
Collapse
|
36
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|
37
|
Abstract
Malfunction of cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC protein superfamily that functions as an ATP-gated chloride channel, causes the lethal genetic disease, cystic fibrosis. This review focuses on the most recent findings on the gating mechanism of CFTR. Potential clinical relevance and implications to ABC transporter function are also discussed.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
38
|
Wang W, El Hiani Y, Rubaiy HN, Linsdell P. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch 2013; 466:477-90. [PMID: 23955087 DOI: 10.1007/s00424-013-1317-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) α-helices, arranged in 2 symmetrical groups of 6. However, those TMs that line the channel pore are not completely defined. We used patch clamp recording to compare the accessibility of cysteine-reactive reagents to cysteines introduced into different TMs. Several residues in TM11 were accessible to extracellular and/or intracellular cysteine reactive reagents; however, no reactive cysteines were identified in TMs 5 or 11. Two accessible residues in TM11 (T1115C and S1118C) were found to be more readily modified from the extracellular solution in closed channels, but more readily modified from the intracellular solution in open channels, as previously reported for T338C in TM6. However, the effects of mutagenesis at S1118 (TM11) on a range of pore functional properties were relatively minor compared to the large effects of mutagenesis at T338 (TM6). Our results suggest that the CFTR pore is lined by TM11 but not by TM5 or TM7. Comparison with previous works therefore suggests that the pore is lined by TMs 1, 6, 11, and 12, suggesting that the structure of the open channel pore is asymmetric in terms of the contributions of different TMs. Although TMs 6 and 11 appear to undergo similar conformational changes during channel opening and closing, the influence of these two TMs on the functional properties of the narrowest region of the pore is clearly unequal.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000 Halifax, Nova Scotia, B3H 4R2, Canada
| | | | | | | |
Collapse
|
39
|
Gao X, Bai Y, Hwang TC. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 2013; 104:786-97. [PMID: 23442957 DOI: 10.1016/j.bpj.2012.12.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023] Open
Abstract
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR's TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR's TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR's gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | | | | |
Collapse
|
40
|
|
41
|
Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function. J Biol Chem 2013; 288:20758-67. [PMID: 23709221 DOI: 10.1074/jbc.m113.476226] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg(352)-Asp(993) and Arg(347)-Asp(924), that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg(347) not only interacts with Asp(924) but also interacts with Asp(993). The tripartite interaction Arg(347)-Asp(924)-Asp(993) mainly contributes to maintaining a stable s2 open subconductance state. The Arg(352)-Asp(993) salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg(352) and Asp(993), channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Center for Cystic Fibrosis Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
42
|
Furukawa-Hagiya T, Furuta T, Chiba S, Sohma Y, Sakurai M. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations. J Phys Chem B 2012; 117:83-93. [PMID: 23214920 DOI: 10.1021/jp308315w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.
Collapse
Affiliation(s)
- Tomoka Furukawa-Hagiya
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
43
|
El Hiani Y, Linsdell P. Tuning of CFTR chloride channel function by location of positive charges within the pore. Biophys J 2012; 103:1719-26. [PMID: 23083715 DOI: 10.1016/j.bpj.2012.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 11/27/2022] Open
Abstract
High unitary Cl(-) conductance in the cystic fibrosis transmembrane conductance regulator Cl(-) channel requires a functionally unique, positively charged lysine residue (K95) in the inner vestibule of the channel pore. Here we used a mutagenic approach to investigate the ability of other sites in the pore to host this important positive charge. The loss of conductance observed in the K95Q mutation was >50% rescued by substituting a lysine for each of five different pore-lining amino acids, suggesting that the exact location of the fixed positive charge is not crucial to support high conductance. Moving the positive charge also restored open-channel blocker interactions that are lost in K95Q. Introducing a second positive charge in addition to that at K95 did not increase conductance at any site, but did result in a striking increase in the strength of block by divalent Pt(NO(2))(4)(2-) ions. Based on the site dependence of these effects, we propose that although the exact location of the positive charge is not crucial for normal pore properties, transplanting this charge to other sites results in a diminution of its effectiveness that appears to depend on its location along the axis of the pore.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
44
|
Wang W, Linsdell P. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 2012; 287:32136-46. [PMID: 22843683 DOI: 10.1074/jbc.m112.385096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple transmembrane (TM) segments line the pore of the cystic fibrosis transmembrane conductance regulator Cl(-) channel; however, the relative alignment of these TMs and their relative movements during channel gating are unknown. To gain three-dimensional structural information on the outer pore, we have used patch clamp recording to study the proximity of pairs of cysteine side chains introduced into TMs 6 and 11, using both disulfide cross-linking and Cd(2+) coordination. Following channel activation, disulfide bonds could apparently be formed between three cysteine pairs (of 15 studied): R334C/T1122C, R334C/G1127C, and T338C/S1118C. To examine the state dependence of cross-linking, we combined these cysteine mutations with a nucleotide-binding domain mutation (E1371Q) that stabilizes the channel open state. Investigation of the effects of the E1371Q mutation on disulfide bond formation and Cd(2+) coordination suggests that although R334C/T1122C and T338C/S1118C are closer together in the channel open state, R334C/G1127C are close together and can form disulfide bonds only when the channel is closed. These results provide important new information on the three-dimensional structure of the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore: TMs 6 and 11 are close enough together to form disulfide bonds in both open and closed channels. Moreover, the altered relative locations of residues in open and in closed channels that we infer allow us to propose that channel opening and closing may be associated with a relative translational movement of TMs 6 and 11, with TM6 moving "down" (toward the cytoplasm) during channel opening.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
45
|
Dalton J, Kalid O, Schushan M, Ben-Tal N, Villà-Freixa J. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J Chem Inf Model 2012; 52:1842-53. [PMID: 22747419 DOI: 10.1021/ci2005884] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter, functioning as a chloride channel critical for fluid homeostasis in multiple organs. Disruption of CFTR function is associated with cystic fibrosis making it an attractive therapeutic target. In addition, CFTR blockers are being developed as potential antidiarrheals. CFTR drug discovery is hampered by the lack of high resolution structural data, and considerable efforts have been invested in modeling the channel structure. Although previously published CFTR models that have been made publicly available mostly agree with experimental data relating to the overall structure, they present the channel in an outward-facing conformation that does not agree with expected properties of a "channel-like" structure. Here, we make available a model of CFTR in such a "channel-like" conformation, derived by a unique modeling approach combining restrained homology modeling and ROSETTA refinement. In contrast to others, the present model is in agreement with expected channel properties such as pore shape, dimensions, solvent accessibility, and experimentally derived distances. We have used the model to explore the interaction of open channel blockers within the pore, revealing a common binding mode and ionic interaction with K95, in agreement with experimental data. The binding-site was further validated using a virtual screening enrichment experiment, suggesting the model might be suitable for drug discovery. In addition, we subjected the model to a molecular dynamics simulation, revealing previously unaddressed salt-bridge interactions that may be important for structure stability and pore-lining residues that may take part in Cl(-) conductance.
Collapse
Affiliation(s)
- James Dalton
- Computational Biochemistry and Biophysics Laboratory, Research Unit on Biomedical Informatics, IMIM Hospital del Mar and Universitat Pompeu Fabra, C/Doctor Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | | | | | | | | |
Collapse
|
46
|
Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012; 45:1132-44. [PMID: 22698459 DOI: 10.1016/j.clinbiochem.2012.05.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is the most common life-threatening recessively inherited disease in Caucasians. Due to early provision of care in specialized reference centers and more comprehensive care, survival has improved over time. Despite great advances in supportive care and in our understanding of its pathophysiology, there is still no cure for the disease. Therapeutic strategies aimed at rescuing the abnormal protein are either being sought after or under investigation. This review highlights salient insights into pathophysiology and candidate molecules suitable for CFTR pharmacotherapy. Clinical trials using Ataluren, VX-809 and ivacaftor have provided encouraging data. Preclinical data with inhibitors of phosphodiesterase type 5, such as sildenafil and analogs, have highlighted their potential for CFTR pharmacotherapy. Because sildenafil and analogs are in clinical use for other clinical applications, research on this class of drugs might speed up the development of new therapies for CF.
Collapse
|
47
|
El Hiani Y, Linsdell P. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry 2012; 51:3971-81. [PMID: 22545782 PMCID: PMC3381012 DOI: 10.1021/bi300065z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opening and closing of the cystic fibrosis transmembrane conductance regulator chloride channel are controlled by interactions of ATP with its cytoplasmic nucleotide binding domains (NBDs). The NBDs are connected to the transmembrane pore via four cytoplasmic loops. These loops have been suggested to play roles both in channel gating and in forming a cytoplasmic extension of the channel pore. To investigate the structure and function of one of these cytoplasmic loops, we have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced into loop 3. We find that methanethiosulfonate (MTS) reagents modify cysteines introduced at 14 of 16 sites studied in the juxtamembrane region of loop 3, in all cases leading to inhibition of channel function. In most cases, both the functional effects of modification and the rate of modification were similar for negatively and positively charged MTS reagents. Single-channel recordings indicated that, at all sites, inhibition was the result of an MTS reagent-induced decrease in channel open probability; in no case was the Cl(-) conductance of open channels altered by modification. These results indicate that loop 3 is readily accessible to the cytoplasm and support the involvement of this region in the control of channel gating. However, our results do not support the hypothesis that this region is close enough to the Cl(-) permeation pathway to exert any influence on permeating Cl(-) ions. We propose that either the cytoplasmic pore is very wide or cytoplasmic Cl(-) ions use other routes to access the transmembrane pore.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University , Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
48
|
Bai Y, Li M, Hwang TC. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). ACTA ACUST UNITED AC 2012; 138:495-507. [PMID: 22042986 PMCID: PMC3206304 DOI: 10.1085/jgp.201110705] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, but little is known about how this ion channel that harbors an uninterrupted ion permeation pathway evolves from a transporter that works by alternately exposing its substrate conduit to the two sides of the membrane. Here, we assessed reactivity of intracellularly applied thiol-specific probes with cysteine residues substituted into the 12th transmembrane segment (TM12) of CFTR. Our experimental data showing high reaction rates of substituted cysteines toward the probes, strong blocker protection of cysteines against reaction, and reaction-induced alterations in channel conductance support the idea that TM12 of CFTR contributes to the lining of the ion permeation pathway. Together with previous work, these findings raise the possibility that pore-lining elements of CFTR involve structural components resembling those that form the substrate translocation pathway of ABC transporters. In addition, comparison of reaction rates in the open and closed states of the CFTR channel leads us to propose that upon channel opening, the wide cytoplasmic vestibule tightens and the pore-lining TM12 rotates along its helical axis. This simple model for gating conformational changes in the inner pore domain of CFTR argues that the gating transition of CFTR and the transport cycle of ABC proteins share analogous conformational changes. Collectively, our data corroborate the popular hypothesis that degradation of the cytoplasmic-side gate turned an ABC transporter into the CFTR channel.
Collapse
Affiliation(s)
- Yonghong Bai
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
49
|
Wang W, Linsdell P. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem 2012; 287:10156-10165. [PMID: 22303012 DOI: 10.1074/jbc.m112.342972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a member of the ATP-binding cassette (ABC) protein family, most members of which act as active transporters. Actively transporting ABC proteins are thought to alternate between "outwardly facing" and "inwardly facing" conformations of the transmembrane substrate pathway. In CFTR, it is assumed that the outwardly facing conformation corresponds to the channel open state, based on homology with other ABC proteins. We have used patch clamp recording to quantify the rate of access of cysteine-reactive probes to cysteines introduced into two different transmembrane regions of CFTR from both the intracellular and extracellular solutions. Two probes, the large [2-sulfonatoethyl]methanethiosulfonate (MTSES) molecule and permeant Au(CN)(2)(-) ions, were applied to either side of the membrane to modify cysteines substituted for Leu-102 (first transmembrane region) and Thr-338 (sixth transmembrane region). Channel opening and closing were altered by mutations in the nucleotide binding domains of the channel. We find that, for both MTSES and Au(CN)(2)(-), access to these two cysteines from the cytoplasmic side is faster in open channels, whereas access to these same sites from the extracellular side is faster in closed channels. These results are consistent with alternating access to the transmembrane regions, however with the open state facing inwardly and the closed state facing outwardly. Our findings therefore prompt revision of current CFTR structural and mechanistic models, as well as having broader implications for transport mechanisms in all ABC proteins. Our results also suggest possible locations of both functional and dysfunctional ("vestigial") gates within the CFTR permeation pathway.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
50
|
Wang W, Linsdell P. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:851-60. [PMID: 22234285 DOI: 10.1016/j.bbamem.2011.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/13/2022]
Abstract
Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada
| | | |
Collapse
|