1
|
Zeng ZW, Linsdell P, Pomès R. Molecular dynamics study of Cl - permeation through cystic fibrosis transmembrane conductance regulator (CFTR). Cell Mol Life Sci 2023; 80:51. [PMID: 36694009 PMCID: PMC9873711 DOI: 10.1007/s00018-022-04621-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
The recent elucidation of atomistic structures of Cl- channel CFTR provides opportunities for understanding the molecular basis of cystic fibrosis. Despite having been activated through phosphorylation and provided with ATP ligands, several near-atomistic cryo-EM structures of CFTR are in a closed state, as inferred from the lack of a continuous passage through a hydrophobic bottleneck region located in the extracellular portion of the pore. Here, we present repeated, microsecond-long molecular dynamics simulations of human CFTR solvated in a lipid bilayer and aqueous NaCl. At equilibrium, Cl- ions enter the channel through a lateral intracellular portal and bind to two distinct cationic sites inside the channel pore but do not traverse the narrow, de-wetted bottleneck. Simulations conducted in the presence of a strong hyperpolarizing electric field led to spontaneous Cl- translocation events through the bottleneck region of the channel, suggesting that the protein relaxed to a functionally open state. Conformational changes of small magnitude involving transmembrane helices 1 and 6 preceded ion permeation through diverging exit routes at the extracellular end of the pore. The pore bottleneck undergoes wetting prior to Cl- translocation, suggesting that it acts as a hydrophobic gate. Although permeating Cl- ions remain mostly hydrated, partial dehydration occurs at the binding sites and in the bottleneck. The observed Cl- pathway is largely consistent with the loci of mutations that alter channel conductance, anion binding, and ion selectivity, supporting the model of the open state of CFTR obtained in the present study.
Collapse
Affiliation(s)
- Zhi Wei Zeng
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 1X5, Canada
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif 2020; 53:e12891. [PMID: 33030764 PMCID: PMC7653241 DOI: 10.1111/cpr.12891] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a mechanism that enables cells to maintain cellular homeostasis by removing damaged materials and mobilizing energy reserves in conditions of starvation. Although nutrient availability strongly impacts the process of autophagy, the specific metabolites that regulate autophagic responses have not yet been determined. Recent results indicate that S-adenosylmethionine (SAM) represents a critical inhibitor of methionine starvation-induced autophagy. SAM is primarily involved in four key metabolic pathways: transmethylation, transsulphuration, polyamine synthesis and 5'-deoxyadenosyl 5'-radical-mediated biochemical transformations. SAM is the sole methyl group donor involved in the methylation of DNA, RNA and histones, modulating the autophagic process by mediating epigenetic effects. Moreover, the metabolites of SAM, such as homocysteine, glutathione, decarboxylated SAM and spermidine, also exert important influences on the regulation of autophagy. From our perspective, nuclear-cytosolic SAM is a conserved metabolic inhibitor that connects cellular metabolic status and the regulation of autophagy. In the future, SAM might be a new target of autophagy regulators and be widely used in the treatment of various diseases.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Si Sun
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shengrong Sun
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Yeh JT, Hwang TC. Positional effects of premature termination codons on the biochemical and biophysical properties of CFTR. J Physiol 2019; 598:517-541. [PMID: 31585024 DOI: 10.1113/jp278418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Biochemical and biophysical characterizations of three nonsense mutations of cystic fibrosis transmembrane conductance regulator (CFTR) associated with a severe form of cystic fibrosis (CF) reveal the importance and heterogenous effects of the position of the premature termination codon (PTC) on the CFTR protein function. Electrophysiological studies of W1282X-CFTR, whose PTC is closer to the C-terminus of CFTR, suggest the presence of both C-terminus truncated CFTR proteins that are poorly functional and read-through, full-length products. For G542X- and E60X-CFTR, the only mechanism capable of generating functional proteins is the read-through, but the outcome of read-through products is highly variable depending on the interplay between the missense mutation caused by the read-through and the structural context of the protein. Pharmacological studies of these three PTCs with various CFTR modulators suggest position-dependent therapeutic strategies for these disease-inflicting mutations. ABSTRACT About one-third of genetic diseases and cancers are caused by the introduction of premature termination codons (PTCs). In theory, the location of the PTC in a gene determines the alternative mechanisms of translation, including premature cessation or reinitiation of translation, and read-through, resulting in differential effects on protein integrity. In this study, we used CFTR as a model system to investigate the positional effect of the PTC because of its well-understood structure-function relationship and pathophysiology. The characterization of three PTC mutations, E60X-, G542X- and W1282X-CFTR revealed heterogenous effects of these PTCs on CFTR function. The W1282X mutation results in both C-terminus truncated and read-through proteins that are partially or fully functional. In contrast, only the read-through protein is functional with E60X- and G542X-CFTR, although abundant N-terminus truncated proteins due to reinitiation of translation were detected in E60X-CFTR. Single-channel studies of the read-through proteins of E60X- and G542X-CFTR demonstrated that both mutations have a single-channel amplitude similar to wild type (WT), and good responses to high-affinity ATP analogues, suggesting intact ion permeation pathways and nucleotide binding domains (NBDs), albeit with reduced open probability (Po ). The comparison of the Po of these mutations with the proposed missense mutations revealed potential identities of the read-through products. Importantly, a majority of the functional protein studied responds to CFTR modulators like GLPG1837 and Lumacaftor. These results not only expand current understanding of the molecular (patho)physiology of CFTR, but also infer therapeutic strategies for different PTC mutations at large.
Collapse
Affiliation(s)
- Jiunn-Tyng Yeh
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tzyh-Chang Hwang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
5
|
Negoda A, Cowley EA, El Hiani Y, Linsdell P. Conformational change of the extracellular parts of the CFTR protein during channel gating. Cell Mol Life Sci 2018; 75:3027-3038. [PMID: 29441426 PMCID: PMC11105745 DOI: 10.1007/s00018-018-2777-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis can be treated by potentiators, drugs that interact directly with the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to increase its open probability. These substances likely target key conformational changes occurring during channel opening and closing, however, the molecular bases of these conformational changes, and their susceptibility to manipulation are poorly understood. We have used patch clamp recording to identify changes in the three-dimensional organization of the extracellularly accessible parts of the CFTR protein during channel opening and closing. State-dependent formation of both disulfide bonds and Cd2+ bridges occurred for pairs of cysteine side-chains introduced into the extreme extracellular ends of transmembrane helices (TMs) 1, 6, and 12. Between each of these three TMs, we found that both disulfide bonds and metal bridges formed preferentially or exclusively in the closed state and that these inter-TM cross-links stabilized the closed state. These results indicate that the extracellular ends of these TMs are close together when the channel is closed and that they separate from each other when the channel opens. These findings identify for the first time key conformational changes in the extracellular parts of the CFTR protein that can potentially be manipulated to control channel activity.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
6
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
7
|
Yang A, Jiao Y, Yang S, Deng M, Yang X, Mao C, Sun Y, Ding N, Li N, Zhang M, Jin S, Zhang H, Jiang Y. Homocysteine activates autophagy by inhibition of CFTR expression via interaction between DNA methylation and H3K27me3 in mouse liver. Cell Death Dis 2018; 9:169. [PMID: 29415998 PMCID: PMC5833451 DOI: 10.1038/s41419-017-0216-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/11/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
Elevated homocysteine (Hcy) levels have been reported to be involved in liver injury, and autophagy plays an important role in normal hepatic physiology and pathophysiology, but the mechanism underlying Hcy regulated autophagy is currently unknown. In this study, CBS+/- mice were fed with regular diet for 12 weeks to establish a hyperhomocysteinemia (HHcy) model and HL-7702 cells were treated with Hcy, we found that Hcy increases autophagy and aggravates liver injury by downregulation of cystic fibrosis transmembrane conductance regulator (CFTR) expression in vivo and in vitro. Overexpression of CFTR inhibited the formation of autophagosomes and the expression of autophagy-related proteins BECN1, LC3-II/I and Atg12, while the expression of p62 increased in Hcy-treated hepatocytes and CBS+/- mice injected with lentivirus expressing CFTR. Further study showed that CFTR expression is regulated by the interaction of DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2), which, respectively, regulate DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, our study showed that Hcy activates autophagy by inhibition of CFTR expression via interaction between H3K27me3 and DNA methylation in the mouse liver. These findings provide new insight into the mechanism of Hcy-induced autophagy in liver injury.
Collapse
Affiliation(s)
- Anning Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Yun Jiao
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Songhao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Mei Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Xiaoling Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Caiyan Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Yue Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Ning Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Nan Li
- Pharmacy college, Ningxia Medical University, Yinchuan, 750004, China
| | - Minghao Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Shaoju Jin
- Pharmacy college, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiping Zhang
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China. .,Ningxia Medical University General Hospital, Yinchuan, 750004, China.
| | - Yideng Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China. .,Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China.
| |
Collapse
|
8
|
Zhang Z, Chen J. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator. Cell 2017; 167:1586-1597.e9. [PMID: 27912062 DOI: 10.1016/j.cell.2016.11.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Zhe Zhang
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
9
|
Negoda A, El Hiani Y, Cowley EA, Linsdell P. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1049-1058. [DOI: 10.1016/j.bbamem.2017.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/20/2017] [Indexed: 12/15/2022]
|
10
|
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017; 74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.
Collapse
Affiliation(s)
- Isabelle Callebaut
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France.
| | - Brice Hoffmann
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Jean-Paul Mornon
- UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, Case 115, IMPMC, Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75005, Paris Cedex 05, France
| |
Collapse
|
11
|
Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017; 74:67-83. [PMID: 27699452 PMCID: PMC11107662 DOI: 10.1007/s00018-016-2389-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
Abstract
The main function of the cystic fibrosis transmembrane conductance regulator (CFTR) is as an ion channel for the movement of small anions across epithelial cell membranes. As an ion channel, CFTR must form a continuous pathway across the cell membrane-referred to as the channel pore-for the rapid electrodiffusional movement of ions. This review summarizes our current understanding of the architecture of the channel pore, as defined by electrophysiological analysis and molecular modeling studies. This includes consideration of the characteristic functional properties of the pore, definition of the overall shape of the entire extent of the pore, and discussion of how the molecular structure of distinct regions of the pore might control different facets of pore function. Comparisons are drawn with closely related proteins that are not ion channels, and also with structurally unrelated proteins with anion channel function. A simple model of pore function is also described.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|