1
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|
3
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
5
|
Blatter LA. The intricacies of atrial calcium cycling during excitation-contraction coupling. J Gen Physiol 2017; 149:857-865. [PMID: 28798277 PMCID: PMC5583713 DOI: 10.1085/jgp.201711809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Blatter discusses the initiation and spread of Ca release, Ca store depletion, and release termination in atrial myocytes.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL
| |
Collapse
|
6
|
Sobie EA, Williams GSB, Lederer WJ. Ambiguous interactions between diastolic and SR Ca 2+ in the regulation of cardiac Ca 2+ release. J Gen Physiol 2017; 149:847-855. [PMID: 28798276 PMCID: PMC5583714 DOI: 10.1085/jgp.201711814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/21/2017] [Indexed: 01/20/2023] Open
Abstract
Sobie et al. highlight unresolved issues concerning the regulation of sarcoplasmic reticulum calcium release in cardiac myocytes.
Collapse
Affiliation(s)
- Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George S B Williams
- BioMET, Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD
| | - W J Lederer
- BioMET, Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD
| |
Collapse
|
7
|
Ríos E. Perspectives on "Control of Ca release from within the cardiac sarcoplasmic reticulum". J Gen Physiol 2017; 149:833-836. [PMID: 28798278 PMCID: PMC5583715 DOI: 10.1085/jgp.201711847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Five groups of experts unravel the complex modulation of a function crucial for the beating heart.
Collapse
Affiliation(s)
- Eduardo Ríos
- Section of Cellular Signaling, Department of Physiology and Biophysics, Rush University, Chicago, IL
| |
Collapse
|
8
|
Györke S, Belevych AE, Liu B, Kubasov IV, Carnes CA, Radwański PB. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. J Gen Physiol 2017; 149:877-888. [PMID: 28798279 PMCID: PMC5583712 DOI: 10.1085/jgp.201711808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Györke et al. discuss the role of sarcoplasmic reticulum Ca2+ in cardiac refractoriness and pathological implications.
Collapse
Affiliation(s)
- Sándor Györke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH .,Davis Heart and Lung Research Institute, Columbus, OH
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| | - Bin Liu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| | - Igor V Kubasov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| | - Przemysław B Radwański
- College of Pharmacy, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| |
Collapse
|