1
|
Milburn GN, Bell J, Wellette-Hunsucker AG, Ruml H, Yackzan AT, Campbell KS. Myocardium From Patients With ATTR Amyloidosis Produces Less Force Secondary to Increased Fibrosis. JACC Basic Transl Sci 2025:S2452-302X(25)00124-X. [PMID: 40338773 DOI: 10.1016/j.jacbts.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/10/2025]
Abstract
Amyloid transthyretin cardiac amyloidosis is one of the most common infiltrative cardiomyopathies. Contractile, biochemical, and histological assays were performed on myocardium from patients with and without amyloid transthyretin amyloidosis. Force was reduced in amyloidosis, but calcium sensitivity was increased. The change in calcium sensitivity may reflect dephosphorylation of troponin I. The proportion of stiffness attributable to the extracellular matrix was larger in amyloidosis. Septal fibrosis and amyloid burden correlated with measurements from LV samples. Technetium pyrophosphate scans may detect increased microcalcifications in amyloidosis myocardium. Replacement of myocytes with extracellular matrix is the most important factor depressing contractile force in amyloidosis myocardium.
Collapse
Affiliation(s)
- Gregory N Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Jania Bell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Austin G Wellette-Hunsucker
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hollings Ruml
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew T Yackzan
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Ishii S, Oyama K, Kobirumaki-Shimozawa F, Nakanishi T, Nakahara N, Suzuki M, Ishiwata S, Fukuda N. Myosin and tropomyosin-troponin complementarily regulate thermal activation of muscles. J Gen Physiol 2023; 155:e202313414. [PMID: 37870863 PMCID: PMC10591409 DOI: 10.1085/jgp.202313414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Contraction of striated muscles is initiated by an increase in cytosolic Ca2+ concentration, which is regulated by tropomyosin and troponin acting on actin filaments at the sarcomere level. Namely, Ca2+-binding to troponin C shifts the "on-off" equilibrium of the thin filament state toward the "on" state, promoting actomyosin interaction; likewise, an increase in temperature to within the body temperature range shifts the equilibrium to the on state, even in the absence of Ca2+. Here, we investigated the temperature dependence of sarcomere shortening along isolated fast skeletal myofibrils using optical heating microscopy. Rapid heating (25 to 41.5°C) within 2 s induced reversible sarcomere shortening in relaxing solution. Further, we investigated the temperature-dependence of the sliding velocity of reconstituted fast skeletal or cardiac thin filaments on fast skeletal or β-cardiac myosin in an in vitro motility assay within the body temperature range. We found that (a) with fast skeletal thin filaments on fast skeletal myosin, the temperature dependence was comparable to that obtained for sarcomere shortening in fast skeletal myofibrils (Q10 ∼8), (b) both types of thin filaments started to slide at lower temperatures on fast skeletal myosin than on β-cardiac myosin, and (c) cardiac thin filaments slid at lower temperatures compared with fast skeletal thin filaments on either type of myosin. Therefore, the mammalian striated muscle may be fine-tuned to contract efficiently via complementary regulation of myosin and tropomyosin-troponin within the body temperature range, depending on the physiological demands of various circumstances.
Collapse
Affiliation(s)
- Shuya Ishii
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kotaro Oyama
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, Gunma, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Tomohiro Nakanishi
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoya Nakahara
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Shin’ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Lookin O, Boulali N, Cazorla O, de Tombe P. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. Pflugers Arch 2023; 475:1203-1210. [PMID: 37603101 DOI: 10.1007/s00424-023-02848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling mechanism (FSM). It is based on preload-dependent activation of sarcomeres-the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM, but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e., average SL. To separate the roles of activation and SL, we characterized SL variability in isolated, fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures such as coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability nor average SL. In stretched myocytes, the averaged SL significantly increased, while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.
Collapse
Affiliation(s)
| | - Najlae Boulali
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Olivier Cazorla
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France
| | - Pieter de Tombe
- Laboratoire "Physiologie Et Médecine Expérimentale du Coeur Et Des Muscles," Phymedexp, INSERM, CNRS, Montpellier University, CHU Arnaud de Villeneuve, 34295, Montpellier, France.
- Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Li J, Sundnes J, Hou Y, Laasmaa M, Ruud M, Unger A, Kolstad TR, Frisk M, Norseng PA, Yang L, Setterberg IE, Alves ES, Kalakoutis M, Sejersted OM, Lanner JT, Linke WA, Lunde IG, de Tombe PP, Louch WE. Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte. Circ Res 2023; 133:255-270. [PMID: 37401464 PMCID: PMC10355805 DOI: 10.1161/circresaha.123.322588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.
Collapse
Affiliation(s)
- Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Terje R. Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Ingunn E. Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Estela S. Alves
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Michaeljohn Kalakoutis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Pieter P. de Tombe
- Department of Physiology and Biophysics, University of Illinois at Chicago (P.P.d.T.)
- Phymedexp, Université de Montpellier, INSERM, CNRS, France (P.P.d.T.)
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| |
Collapse
|