1
|
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun 2024; 15:9136. [PMID: 39443489 PMCID: PMC11499932 DOI: 10.1038/s41467-024-53079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.
Collapse
Affiliation(s)
- Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, Feghali-Bostwick C, Saini N. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun 2024; 15:8889. [PMID: 39406724 PMCID: PMC11480385 DOI: 10.1038/s41467-024-53332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis that primarily affects women, and can present as a multisystem pathology. Roughly 4-22% of patients with systemic sclerosis develop cancer, which drastically worsens prognosis. However, the mechanisms underlying systemic sclerosis initiation, propagation, and cancer development are poorly understood. We hypothesize that the inflammation and immune response associated with systemic sclerosis can trigger DNA damage, leading to elevated somatic mutagenesis, a hallmark of pre-cancerous tissues. To test our hypothesis, we culture clonal lineages of fibroblasts from the lung tissues of controls and systemic sclerosis patients and compare their mutation burdens and spectra. We find an overall increase in all major mutation types in systemic sclerosis samples compared to control lung samples, from small-scale events such as single base substitutions and insertions/deletions, to chromosome-level changes, including copy-number changes and structural variants. In the genomes of patients with systemic sclerosis, we find evidence of somatic hypermutation or kategis (typically only seen in cancer genomes), we identify mutation signatures closely resembling the error-prone translesion polymerase Polη activity, and observe an activation-induced deaminase-like mutation signature, which overlaps with genomic regions displaying kataegis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Seixas J, Padutsch N, Kankel S, Liehr T, Sy A. Molecular Cytogenetic Characterization of Rare but Repeatedly Observed Inversions in German Population. Cytogenet Genome Res 2024; 164:78-84. [PMID: 38797165 DOI: 10.1159/000539447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION The term inversion refers to an aberration caused by two breakage and fusion events found in one or both arms of a chromosome. The presence of such aberrations can but must not be associated with infertility or unbalanced products of conception. Normally, inversions are not associated with phenotypic alterations for the carrier. Despite the fact that most such inversions are de novo and unique, recurrent breakpoints have also been reported. METHODS Here two recurrent paracentric inversions in the long arm of chromosomes 11 and 12 and a pericentric one in chromosome 10 were studied in at least 10 unrelated (infertile) patients, each. Breakpoints were narrowed down by fluorescence in situ hybridization applying locus-specific bacterial artificial chromosome-derived probes. RESULTS Molecular cytogenetically identical breakpoints could be characterized for all three studied inversions. Pericentric inversion inv(10)(p11.21q21.2), previously reported to be of single origin and distributed mainly in Northern Europe, could be found to be present all over Germany, too. In the studied cases with paracentric inversion inv(11)(q21q23.3), recurrent breakpoints were found in all parts of Germany, as well; however, additional 2 cases with slightly different breakpoints were characterized besides. Most interestingly, inversion inv(12)(q14.1∼14.2q24.11∼24.13) had always the same recurrent breakpoints and presented an exclusive occurrence in North-Western part of Germany. CONCLUSION Overall, (at least) three different cytogenetically detectable recurrent inversions were characterized here. This highlights that such events may be more frequent in human population than yet suggested. Accordingly, such events might even spread in (middle European) human population. Specific impact on reproduction and fitness of inversion carriers characterized here seems to be negligible. Nonetheless, such recurrent rearrangements need more attention as they may provide valuable information for genetic counseling in future.
Collapse
Affiliation(s)
- Joana Seixas
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
- Coimbra University, Faculty of Medicine, Coimbra, Portugal
| | - Niklas Padutsch
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | - Stefanie Kankel
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | - Alody Sy
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
4
|
Toruner GA, Thakral B, Tang Z, Tang G, Medeiros LJ, Oran B. Clonal cytogenetic abnormalities in donor-derived cells after sex mismatched allogeneic stem cell transplantation. Cancer Genet 2021; 258-259:120-130. [PMID: 34715428 DOI: 10.1016/j.cancergen.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Clonal cytogenetic abnormalities (CCA) in donor-derived cells after stem cell transplant (SCT) are typically reported in donor-derived cell neoplasms, but CCA also may reflect a constitutional abnormality in the donor or may be present in a recipient without overt hematological malignancy. We reviewed 8515 tests on 2035 patients, who had allogenic sex mismatched SCT and underwent serial cytogenetic analysis between 2006 and 2020 in our institution. A constitutional CCA was observed in 3 patients: inv(10), t(1;5), and t(13;14). A somatic CCA without overt neoplasia was detected in 12 patients: del(7q) (n = 6), del(20q) (n = 3), der(11)t(11;11) (n = 1), t(1;9) (n = 1), dup(6p)(n = 1). In this group, four patients with cytopenia had del(7q), and an association between del(7q) and an adverse overall survival (OS) was observed [HR:5.99; 95%CI 1.23-29.92). Four patients had a donor-derived cell neoplasm: myelodysplastic syndrome (n = 3) and acute myeloid leukemia (n = 1), and all four neoplasms had loss of 7q. In our cohort, ∼1% of the patients (19/2,035) had CCA in donor-derived cells. Balanced constitutional CCA can pose a reproductive risk to donor. Loss of 7q is the most common somatic CCA, in donor-derived cells.
Collapse
Affiliation(s)
- Gokce A Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Sismani C, Rapti SM, Iliopoulou P, Spring A, Neroutsou R, Lagou M, Robola M, Tsitsopoulos E, Kousoulidou L, Alexandrou A, Papaevripidou I, Theodosiou A, Syrrou M, Fuchs S, Hempel M, Huhle D, Liehr T, Ziegler M, Duesberg M, Velissariou V. Novel pericentric inversion inv(9)(p23q22.3) in unrelated individuals with fertility problems in the Southeast European population. J Hum Genet 2020; 65:783-795. [PMID: 32398760 DOI: 10.1038/s10038-020-0769-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022]
Abstract
Pericentric inversions are among the known polymorphisms detected in the general population at a frequency of 1-2%. Despite their generally benign nature, pericentric inversions affect the reproductive potential of carriers by increasing the risk for unbalanced live-born offspring, miscarriages, or other fertility problems. Here we present a novel large pericentric inversion of chromosome 9, inv(9)(p23q22.3), detected in 30 heterozygote carriers, 24 from seven apparently unrelated families and 6 isolated patients, where the probands were mainly referred for fertility and prenatal problems. The inversion carries a significant risk for recombinant abnormal chromosomes, as in two families one supernumerary rec(9)dup(9p) and one rec(9)dup(9q) were identified, leading to neonatal death and miscarriage, respectively. The inversion carriers were identified by three different laboratories in Greece, Cyprus and Germany respectively, however all carriers have Southeast European origin. The inversion appears to be more frequent in the Greek population, as the majority of the carriers were identified in Greece. We were able to determine that the inversion is identical in all individuals included in the study by applying a combination of several methodologies, such as karyotype, fluorescence in situ hybridization (FISH), chromosomal microarrays (CMA) and haplotype analysis. In addition, haplotype analysis supports that the present inversion is identical by descent (IBD) inherited from a single common ancestor. Our results are, therefore, highly indicative of a founder effect of this inversion, presumably reflecting an event that was present in a small number of individuals that migrated to the current Southeast Europe/Northern Greece from a larger population.
Collapse
Affiliation(s)
- Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stamatia-Maria Rapti
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Pavlina Iliopoulou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Anastasia Spring
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Rozalia Neroutsou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Magdalini Lagou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | - Marianna Robola
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece
| | | | - Ludmila Kousoulidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Syrrou
- Department of Biology, Medical School, University of Ioannina, Ioannina, Greece
| | - Sigrid Fuchs
- Institute of Human Genetics, University Hospital, Hamburg- Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital, Hamburg- Eppendorf, Martinistraße 52, D-20246, Hamburg, Germany
| | - Dagmar Huhle
- Medizinisches Versorgungszentrum, Karl- Liebknecht- Str. 14, 04107, Leipzig, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Monika Ziegler
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Max Duesberg
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Voula Velissariou
- Department of Genetics and Molecular Biology, Bioiatriki Healthcare Group, Athens, Greece. .,NIPD Genetics Public Company Ltd, 31 Neas Engomis Street, 2409, Engomi, Nicosia, Cyprus.
| |
Collapse
|
6
|
Stankiewicz P. One pedigree we all may have come from - did Adam and Eve have the chromosome 2 fusion? Mol Cytogenet 2016; 9:72. [PMID: 27708712 PMCID: PMC5037601 DOI: 10.1186/s13039-016-0283-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Background In contrast to Great Apes, who have 48 chromosomes, modern humans and likely Neandertals and Denisovans have and had, respectively, 46 chromosomes. The reduction in chromosome number was caused by the head-to-head fusion of two ancestral chromosomes to form human chromosome 2 (HSA2) and may have contributed to the reproductive barrier with Great Apes. Results Next generation sequencing and molecular clock analyses estimated that this fusion arose prior to our last common ancestor with Neandertal and Denisovan hominins ~ 0.74 - 4.5 million years ago. Hypotheses I propose that, unlike recurrent Robertsonian translocations in humans, the HSA2 fusion was a single nonrecurrent event that spread through a small polygamous clan population bottleneck. Its heterozygous to homozygous conversion, fixation, and accumulation in the succeeding populations was likely facilitated by an evolutionary advantage through the genomic loss rather than deregulation of expression of the gene(s) flanking the HSA2 fusion site at 2q13. Conclusions The origin of HSA2 might have been a critical evolutionary event influencing higher cognitive functions in various early subspecies of hominins. Next generation sequencing of Homo heidelbergensis and Homo erectus genomes and complete reconstruction of DNA sequence of the orthologous subtelomeric chromosomes in Great Apes should enable more precise timing of HSA2 formation and better understanding of its evolutionary consequences.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX 77030 USA
| |
Collapse
|
7
|
Drabova J, Trkova M, Hancarova M, Novotna D, Hejtmankova M, Havlovicova M, Sedlacek Z. A 15 Mb large paracentric chromosome 21 inversion identified in Czech population through a pair of flanking duplications. Mol Cytogenet 2014; 7:51. [PMID: 25411581 PMCID: PMC4236861 DOI: 10.1186/1755-8166-7-51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/20/2014] [Indexed: 11/22/2022] Open
Abstract
Background Inversions are balanced structural chromosome rearrangements, which can influence gene expression and the risk of unbalanced chromosome constitution in offspring. Many examples of inversion polymorphisms exist in human, affecting both heterochromatic regions and euchromatin. Results We describe a novel, 15 Mb long paracentric inversion, inv(21)(q21.1q22.11), affecting more than a third of human 21q. Despite of its length, the inversion cannot be detected using karyotyping due to similar band patterns on the normal and inverted chromosomes, and is therefore likely to escape attention. Its identification was aided by the repeated observation of the same pair of 150 kb long duplications present in cis on chromosome 21 in three Czech families subjected to microarray analysis. The finding prompted us to hypothesise that this co-occurrence of two remote duplications could be associated with an inversion of the intervening segment, and this speculation turned out to be right. The inversion was confirmed in a series of FISH experiments which also showed that the second copy of each of the duplications was always located at the opposite end of the inversion. The presence of the same pair of duplications in additional individuals reported in public databases indicates that the inversion may also be present in other populations. Three out of the total of about 4000 chromosomes 21 examined in our sample carried the duplications and were inverted, corresponding to carrier frequency of about 1/660. Although the breakpoints affect protein-coding genes, the occurrence of the inversion in normal parents and siblings of our patients and the occurrence of the duplications in unaffected controls in databases indicate that this rare variant is rather non-pathogenic. The inverted segment carried an identical shared haplotype in the three families studied. The haplotypes, however, diverged very rapidly in the flanking regions, possibly pointing to an ancient founder event at the origin of the inversion. Conclusions The identification of inv(21)(q21.1q22.11) supports the notion that paracentric inversions are the most common form of chromosomal variation and that some of them may still remain undetected.
Collapse
Affiliation(s)
- Jana Drabova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Drahuse Novotna
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Marketa Havlovicova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
8
|
Aguado C, Gayà-Vidal M, Villatoro S, Oliva M, Izquierdo D, Giner-Delgado C, Montalvo V, García-González J, Martínez-Fundichely A, Capilla L, Ruiz-Herrera A, Estivill X, Puig M, Cáceres M. Validation and genotyping of multiple human polymorphic inversions mediated by inverted repeats reveals a high degree of recurrence. PLoS Genet 2014; 10:e1004208. [PMID: 24651690 PMCID: PMC3961182 DOI: 10.1371/journal.pgen.1004208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/14/2014] [Indexed: 01/17/2023] Open
Abstract
In recent years different types of structural variants (SVs) have been discovered in the human genome and their functional impact has become increasingly clear. Inversions, however, are poorly characterized and more difficult to study, especially those mediated by inverted repeats or segmental duplications. Here, we describe the results of a simple and fast inverse PCR (iPCR) protocol for high-throughput genotyping of a wide variety of inversions using a small amount of DNA. In particular, we analyzed 22 inversions predicted in humans ranging from 5.1 kb to 226 kb and mediated by inverted repeat sequences of 1.6-24 kb. First, we validated 17 of the 22 inversions in a panel of nine HapMap individuals from different populations, and we genotyped them in 68 additional individuals of European origin, with correct genetic transmission in ∼ 12 mother-father-child trios. Global inversion minor allele frequency varied between 1% and 49% and inversion genotypes were consistent with Hardy-Weinberg equilibrium. By analyzing the nucleotide variation and the haplotypes in these regions, we found that only four inversions have linked tag-SNPs and that in many cases there are multiple shared SNPs between standard and inverted chromosomes, suggesting an unexpected high degree of inversion recurrence during human evolution. iPCR was also used to check 16 of these inversions in four chimpanzees and two gorillas, and 10 showed both orientations either within or between species, providing additional support for their multiple origin. Finally, we have identified several inversions that include genes in the inverted or breakpoint regions, and at least one disrupts a potential coding gene. Thus, these results represent a significant advance in our understanding of inversion polymorphism in human populations and challenge the common view of a single origin of inversions, with important implications for inversion analysis in SNP-based studies.
Collapse
Affiliation(s)
- Cristina Aguado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Magdalena Gayà-Vidal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Sergi Villatoro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Meritxell Oliva
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - David Izquierdo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Carla Giner-Delgado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Víctor Montalvo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Judit García-González
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | - Laia Capilla
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Departament de Biologia Celular, Fisiologia i Immunologia. Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Xavier Estivill
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
9
|
Entesarian M, Carlsson B, Mansouri MR, Stattin EL, Holmberg E, Golovleva I, Stefansson H, Klar J, Dahl N. A chromosome 10 variant with a 12 Mb inversion [inv(10)(q11.22q21.1)] identical by descent and frequent in the Swedish population. Am J Med Genet A 2009; 149A:380-6. [PMID: 19213037 DOI: 10.1002/ajmg.a.32663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We identified a paracentric inversion of chromosome 10 [inv(10)(q11.22q21.1)] in 0.20% of Swedish individuals (15/7,439) referred for cytogenetic analysis. A retrospective analysis of 8,896 karyotypes from amniocenteses in Sweden revealed a carrier frequency of 0.079% (7/8,896) for the inversion. Cloning and detailed analysis of the inversion breakpoint regions show enrichment for interspersed repeat elements and AT-stretches. The centromeric breakpoint coincides with that of a predicted inversion from HapMap data, which suggests that this region is involved in several chromosome 10 variants. No known gene or predicted transcript are disrupted by the inversion which spans approximately 12 Mb. Carriers from four non-related Swedish families have identical inversion breakpoints and haplotype analysis confirmed that the rearrangement is identical by descent. Diagnosis was retrieved in 6 out of the 15 carriers referred for cytogenetic analysis. No consistent phenotype was found to be associated with the inversion. Our study demonstrates that the inv(10)(q11.22q21.1) is a rare and inherited chromosome variant with a broad geographical distribution in Sweden.
Collapse
Affiliation(s)
- Miriam Entesarian
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Thomas NS, Bryant V, Maloney V, Cockwell AE, Jacobs PA. Investigation of the origins of human autosomal inversions. Hum Genet 2008; 123:607-16. [PMID: 18470537 DOI: 10.1007/s00439-008-0510-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 05/01/2008] [Indexed: 11/26/2022]
Abstract
A significant proportion of both pericentric and paracentric inversions have recurrent breakpoints and so could either have arisen through multiple independent events or be identical by descent (IBD) with a single common ancestor. Of two common variant inversions previously studied, the inv(2)(p11q13) was genuinely recurrent while the inv(10)(p11.2q21.2) was IBD in all cases tested. Excluding these two variants we have ascertained 257 autosomal inversion probands at the Wessex Regional Genetics Laboratory. There were 104 apparently recurrent inversions, representing 35 different breakpoint combinations and we speculated that at least some of these had arisen on more than one occasion. However, haplotype analysis identified no recurrent cases among eight inversions tested, including the variant inv(5)(p13q13). The cases not IBD were shown to have different breakpoints at the molecular cytogenetic level. No crossing over was detected within any of the inversions and the founder haplotypes extended for variable distances beyond the inversion breakpoints. Defining breakpoint intervals by FISH mapping identified no obvious predisposing elements in the DNA sequence. In summary the vast majority of human inversions arise as unique events. Even apparently recurrent inversions, with the exception of the inv(2)(p12q13), are likely to be either derived from a common ancestor or to have subtly different breakpoints. Presumably the lack of selection against most inversions allows them to accumulate and disperse amongst different populations over time.
Collapse
Affiliation(s)
- N Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury SP2 8BJ, UK.
| | | | | | | | | |
Collapse
|
11
|
Tzschach A, Ramel C, Kron A, Seipel B, Wüster C, Cordes U, Liehr T, Hoeltzenbein M, Menzel C, Ropers HH, Ullmann R, Kalscheuer V, Decker J, Steinberger D. Hypergonadotropic hypogonadism in a patient with inv ins (2;4). ACTA ACUST UNITED AC 2007; 32:226-30. [PMID: 18042180 DOI: 10.1111/j.1365-2605.2007.00839.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report on a 30-year-old man with azoospermia, primary hypogonadism and minor dysmorphic features who carried a balanced insertional chromosome translocation inv ins (2p24;4q28.3q31.22)de novo. Molecular cytogenetic analyses of the chromosome breakpoints revealed the localization of the breakpoint in 4q28.3 between BACs RP11-143E9 and RP11-285A15, an interval that harbours the PCDH10 gene. In 4q31.22, a breakpoint-spanning clone (RP11-6L6) was identified which contains the genes LSM6 and SLC10A7. On chromosome 2, BACs RP11-531P14 and RP11-360O18 flank the breakpoint in 2p24, a region void of known genes. In conclusion, the chromosome aberration of this patient suggests a gene locus for primary hypogonadism in 2p24, 4q28.3 or 4q31.2, and three possible candidate genes (LSM6, SLC10A7 and PCDH10) were identified by breakpoint analyses.
Collapse
Affiliation(s)
- A Tzschach
- Max Planck Institute for Molecular Genetics, Department Ropers, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|