1
|
Chen LG, Lan T, Zhang S, Zhao M, Luo G, Gao Y, Zhang Y, Du Q, Lu H, Li B, Jiao B, Hu Z, Ma Y, Zhao Q, Wang Y, Qian W, Dai J, Jiao Y. A designer synthetic chromosome fragment functions in moss. NATURE PLANTS 2024; 10:228-239. [PMID: 38278952 DOI: 10.1038/s41477-023-01595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024]
Abstract
Rapid advances in DNA synthesis techniques have enabled the assembly and engineering of viral and microbial genomes, presenting new opportunities for synthetic genomics in multicellular eukaryotic organisms. These organisms, characterized by larger genomes, abundant transposons and extensive epigenetic regulation, pose unique challenges. Here we report the in vivo assembly of chromosomal fragments in the moss Physcomitrium patens, producing phenotypically virtually wild-type lines in which one-third of the coding region of a chromosomal arm is replaced by redesigned, chemically synthesized fragments. By eliminating 55.8% of a 155 kb endogenous chromosomal region, we substantially simplified the genome without discernible phenotypic effects, implying that many transposable elements may minimally impact growth. We also introduced other sequence modifications, such as PCRTag incorporation, gene locus swapping and stop codon substitution. Despite these substantial changes, the complex epigenetic landscape was normally established, albeit with some three-dimensional conformation alterations. The synthesis of a partial multicellular eukaryotic chromosome arm lays the foundation for the synthetic moss genome project (SynMoss) and paves the way for genome synthesis in multicellular organisms.
Collapse
Affiliation(s)
- Lian-Ge Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Tianlong Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Shuo Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengkai Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guangyu Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingwei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Houze Lu
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Bimeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingke Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiao Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Junbiao Dai
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
2
|
Mani N, Daiya A, Chowdhury R, Mukherjee S, Chowdhury S. Epigenetic adaptations in drug-tolerant tumor cells. Adv Cancer Res 2023; 158:293-335. [PMID: 36990535 DOI: 10.1016/bs.acr.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional chemotherapy against cancer is often severely hampered by acquired resistance to the drug. Epigenetic alterations and other mechanisms like drug efflux, drug metabolism, and engagement of survival pathways are crucial in evading drug pressure. Herein, growing evidence suggests that a subpopulation of tumor cells can often tolerate drug onslaught by entering a "persister" state with minimal proliferation. The molecular features of these persister cells are gradually unraveling. Notably, the "persisters" act as a cache of cells that can eventually re-populate the tumor post-withdrawal drug pressure and contribute to acquiring stable drug-resistant features. This underlines the clinical significance of the tolerant cells. Accumulating evidence highlights the importance of modulation of the epigenome as a critical adaptive strategy for evading drug pressure. Chromatin remodeling, altered DNA methylation, and de-regulation of non-coding RNA expression and function contribute significantly to this persister state. No wonder targeting adaptive epigenetic modifications is increasingly recognized as an appropriate therapeutic strategy to sensitize them and restore drug sensitivity. Furthermore, manipulating the tumor microenvironment and "drug holiday" is also explored to maneuver the epigenome. However, heterogeneity in adaptive strategies and lack of targeted therapies have significantly hindered the translation of epigenetic therapy to the clinics. In this review, we comprehensively analyze the epigenetic alterations adapted by the drug-tolerant cells, the therapeutic strategies employed to date, and their limitations and future prospects.
Collapse
|
3
|
Mombach DM, da Fontoura Gomes TMF, Loreto ELS. Stress does not induce a general transcription of transposable elements in Drosophila. Mol Biol Rep 2022; 49:9033-9040. [PMID: 35980533 DOI: 10.1007/s11033-022-07839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Transposable elements, also known as "jumping genes," have the ability to hop within the host genome. Nonetheless, this capacity is kept in check by the host cell defense systems to avoid unbridled TE mobilization. Different types of stressors can activate TEs in Drosophila, suggesting that TEs may play an adaptive role in the stress response, especially in generating genetic variability for adaptive evolution. TE activation by stressors may also lead to the notion, usually found in the literature, that any form of stress could activate all or the majority of TEs. In this review, we define what stress is. We then present and discuss RNA sequencing results from several studies demonstrating that stress does not trigger TE transcription broadly in Drosophila. An explanation for the LTR order of TEs being the most overexpressed is also proposed.
Collapse
Affiliation(s)
- Daniela Moreira Mombach
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
4
|
Linquist S, Fullerton B. Transposon dynamics and the epigenetic switch hypothesis. THEORETICAL MEDICINE AND BIOETHICS 2021; 42:137-154. [PMID: 34919173 PMCID: PMC8938347 DOI: 10.1007/s11017-021-09548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The recent explosion of interest in epigenetics is often portrayed as the dawning of a scientific revolution that promises to transform biomedical science along with developmental and evolutionary biology. Much of this enthusiasm surrounds what we call the epigenetic switch hypothesis, which regards certain examples of epigenetic inheritance as an adaptive organismal response to environmental change. This interpretation overlooks an alternative explanation in terms of coevolutionary dynamics between parasitic transposons and the host genome. This raises a question about whether epigenetics researchers tend to overlook transposon dynamics more generally. To address this question, we surveyed a large sample of scientific publications on the topics of epigenetics and transposons over the past fifty years. We found that enthusiasm for epigenetics is often inversely related to interest in transposon dynamics across the four disciplines we examined. Most surprising was a declining interest in transposons within biomedical science and cellular and molecular biology over the past two decades. Also notable was a delayed and relatively muted enthusiasm for epigenetics within evolutionary biology. An analysis of scientific abstracts from the past twenty-five years further reveals systematic differences among disciplines in their uses of the term epigenetic, especially with respect to heritability commitments and functional interpretations. Taken together, these results paint a nuanced picture of the rise of epigenetics and the possible neglect of transposon dynamics, especially among biomedical scientists.
Collapse
Affiliation(s)
- Stefan Linquist
- Department of Philosophy, University of Guelph, Guelph, ON, Canada.
| | - Brady Fullerton
- Department of Philosophy, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Yates-Stewart AD, Daron J, Wijeratne S, Shahid S, Edgington HA, Slotkin RK, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103363. [PMID: 32201218 DOI: 10.1016/j.ibmb.2020.103363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
In agricultural systems, crops equipped with host-plant resistance (HPR) have enhanced protection against pests, and are used as a safe and sustainable tool in pest management. In soybean, HPR can control the soybean aphid (Aphis glycines), but certain aphid populations have overcome this resistance (i.e., virulence). The molecular mechanisms underlying aphid virulence to HPR are unknown, but likely involve effector proteins that are secreted by aphids to modulate plant defenses. Another mechanism to facilitate adaptation is through the activity of transposable elements, which can become activated by stress. In this study, we performed RNA sequencing of virulent and avirulent soybean aphids fed susceptible or resistant (Rag1 + Rag2) soybean. Our goal was to better understand the molecular mechanisms underlying soybean aphid virulence. Our data showed that virulent aphids mostly down regulate putative effector genes relative to avirulent aphids, especially when aphids were fed susceptible soybean. Decreased expression of effectors may help evade HPR plant defenses. Virulent aphids also transcriptionally up regulate a diverse set of transposable elements and nearby genes, which is consistent with stress adaptation. Our work demonstrates two mechanisms of pest adaptation to resistance, and identifies effector gene targets for future functional testing.
Collapse
Affiliation(s)
| | - Josquin Daron
- CNRS, Centre National de la Recherche Scientifique, Montpellier, France
| | - Saranga Wijeratne
- The Ohio State University, Molecular and Cellular Imaging Center, OARDC, Wooster, OH, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St, Louis, MO, USA
| | - Hilary A Edgington
- The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St, Louis, MO, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Andy Michel
- The Ohio State University, Center for Applied Plant Sciences, Wooster, OH, USA; The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA.
| |
Collapse
|
6
|
Brzović Z, Šustar P. Postgenomics function monism. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 80:101243. [PMID: 31924514 DOI: 10.1016/j.shpsc.2019.101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The ENCODE project has made important new estimates of human genome functionality, now revising the percentage considered functional to more than 80%, which is in stark contrast to the received view, which estimated that less than 10% of the conserved parts of the human genome are functional. ENCODE's unorthodox use of the notion of biological function has stirred the so-called ENCODE controversy, involving conflicting views about the correct notion of function in postgenomics. The debate hinges on the traditional philosophical contrast between the causal role (CR) and selected effects (SE) approaches. In this paper, we examine the ENCODE controversy in terms of the distinction between function monism and pluralism. We propose to apply a weak etiological account to genomic function ascriptions. In this approach, we can ascribe a function to a genomic structure of an organism if and only if performing the function persists in causally contributing to the organism's and its ancestors' fitness. In comparison to the strong etiological (i.e., the selected effects) approach, the present account does not require there to be selection for the structure in question. This is a monistic approach that enables us to avoid the main difficulties of CR, as well as SE's overdependence on natural selection, while still preserving an evolutionary-constrained notion of biological functions. Our proposal is much more moderate in accommodating the estimates of the functionality of the human genome than both ENCODE's proposal itself and the views of the critics relying on a version of the SE account of functions.
Collapse
Affiliation(s)
- Zdenka Brzović
- Department of Philosophy, Faculty of Humanities and Social Sciences, University of Rijeka, Sveučilišna avenija 4, 51000, Rijeka, Croatia.
| | - Predrag Šustar
- Department of Philosophy, Faculty of Humanities and Social Sciences, University of Rijeka, Sveučilišna avenija 4, 51000, Rijeka, Croatia.
| |
Collapse
|
7
|
Affiliation(s)
- Stefan Linquist
- Department of Philosophy, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - W. Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
8
|
Todd CD, Deniz Ö, Taylor D, Branco MR. Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. eLife 2019; 8:e44344. [PMID: 31012843 PMCID: PMC6544436 DOI: 10.7554/elife.44344] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
Transposable elements (TEs) are thought to have helped establish gene regulatory networks. Both the embryonic and extraembryonic lineages of the early mouse embryo have seemingly co-opted TEs as enhancers, but there is little evidence that they play significant roles in gene regulation. Here we tested a set of long terminal repeat TE families for roles as enhancers in mouse embryonic and trophoblast stem cells. Epigenomic and transcriptomic data suggested that a large number of TEs helped to establish tissue-specific gene expression programmes. Genetic editing of individual TEs confirmed a subset of these regulatory relationships. However, a wider survey via CRISPR interference of RLTR13D6 elements in embryonic stem cells revealed that only a minority play significant roles in gene regulation. Our results suggest that a subset of TEs are important for gene regulation in early mouse development, and highlight the importance of functional experiments when evaluating gene regulatory roles of TEs.
Collapse
Affiliation(s)
- Christopher D Todd
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
- Centre for Genomic Health, Life Sciences InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
- Centre for Genomic Health, Life Sciences InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Darren Taylor
- Centre for Genomic Health, Life Sciences InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Miguel R Branco
- Centre for Genomic Health, Life Sciences InstituteQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Kaiser MI. ENCODE and the parts of the human genome. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2018; 72:28-37. [PMID: 30385203 DOI: 10.1016/j.shpsc.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/25/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
This paper examines a specific kind of part-whole relations that exist in the molecular genetic domain. The central question is under which conditions a particular molecule, such as a DNA sequence, is a biological part of the human genome. I address this question by analyzing how biologists in fact partition the human genome into parts. This paper thus presents a case study in the metaphysics of biological practice. I develop a metaphysical account of genomic parthood by analyzing the investigative and reasoning practices in the ENCODE (ENCyclopedia Of DNA Elements) project. My account reveals two conditions that determine whether a molecule is a part of the human genome (i.e., a genomic part). First, genomic parts must possess a causal role function in the genome as a whole, that is, their functions must contribute to the genome directing the overall functioning of the cell. Second, genomic parts must have a specific chemical structure and be actual segments of the DNA sequence of the genome.
Collapse
Affiliation(s)
- Marie I Kaiser
- Bielefeld University, Department of Philosophy, Postfach 10 01 31, D-33501, Bielefeld, Germany.
| |
Collapse
|
10
|
Abstract
Selfish genetic elements (historically also referred to as selfish genes, ultra-selfish genes, selfish DNA, parasitic DNA, genomic outlaws) are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no or a negative effect on organismal fitness. [1-6] Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. However, when genes have some control over their own transmission, the rules can change, and so just like all social groups, genomes are vulnerable to selfish behaviour by their parts. Early observations of selfish genetic elements were made almost a century ago, but the topic did not get widespread attention until several decades later. Inspired by the gene-centred views of evolution popularized by George Williams[7] and Richard Dawkins,[8] two papers were published back-to-back in Nature in 1980-by Leslie Orgel and Francis Crick[9] and Ford Doolittle and Carmen Sapienza[10] respectively-introducing the concept of selfish genetic elements (at the time called "selfish DNA") to the wider scientific community. Both papers emphasized that genes can spread in a population regardless of their effect on organismal fitness as long as they have a transmission advantage. Selfish genetic elements have now been described in most groups of organisms, and they demonstrate a remarkable diversity in the ways by which they promote their own transmission.[11] Though long dismissed as genetic curiosities, with little relevance for evolution, they are now recognized to affect a wide swath of biological processes, ranging from genome size and architecture to speciation.[12].
Collapse
Affiliation(s)
- J. Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- * E-mail: (JAÅ); (AGC)
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- * E-mail: (JAÅ); (AGC)
| |
Collapse
|
11
|
Abstract
The idea that much of our genome is irrelevant to fitness-is not the product of positive natural selection at the organismal level-remains viable. Claims to the contrary, and specifically that the notion of "junk DNA" should be abandoned, are based on conflating meanings of the word "function". Recent estimates suggest that perhaps 90% of our DNA, though biochemically active, does not contribute to fitness in any sequence-dependent way, and possibly in no way at all. Comparisons to vertebrates with much larger and smaller genomes (the lungfish and the pufferfish) strongly align with such a conclusion, as they have done for the last half-century.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Tyler D P Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Horváth V, Merenciano M, González J. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. Trends Genet 2017; 33:832-841. [DOI: 10.1016/j.tig.2017.08.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
13
|
Abstract
Many of the most important evolutionary variations that generated phenotypic adaptations and originated novel taxa resulted from complex cellular activities affecting genome content and expression. These activities included (i) the symbiogenetic cell merger that produced the mitochondrion-bearing ancestor of all extant eukaryotes, (ii) symbiogenetic cell mergers that produced chloroplast-bearing ancestors of photosynthetic eukaryotes, and (iii) interspecific hybridizations and genome doublings that generated new species and adaptive radiations of higher plants and animals. Adaptive variations also involved horizontal DNA transfers and natural genetic engineering by mobile DNA elements to rewire regulatory networks, such as those essential to viviparous reproduction in mammals. In the most highly evolved multicellular organisms, biological complexity scales with 'non-coding' DNA content rather than with protein-coding capacity in the genome. Coincidentally, 'non-coding' RNAs rich in repetitive mobile DNA sequences function as key regulators of complex adaptive phenotypes, such as stem cell pluripotency. The intersections of cell fusion activities, horizontal DNA transfers and natural genetic engineering of Read-Write genomes provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Schlosser K, Hanson J, Villeneuve PJ, Dimitroulakos J, McIntyre L, Pilote L, Stewart DJ. Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers. Sci Rep 2016; 6:36596. [PMID: 27857151 PMCID: PMC5114641 DOI: 10.1038/srep36596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNA) are a new class of regulatory molecules with diverse cellular functions. Recent reports have suggested that extracellular lncRNAs are detectable in human plasma and may serve as biomarkers. Here, we sought to investigate circulating lncRNAs as potential biomarkers for pulmonary arterial hypertension (PAH). Eighty-four lncRNAs, representing some of the most abundant and functionally relevant candidates identified in cellular studies, were assessed via RT-qPCR in plasma from PAH and healthy subjects. However, despite preamplification, the majority of lncRNAs were surprisingly undetectable or sporadically detectable, and showed no differential changes. Systematic characterization of plasma/RNA quality and technical performance via internal and external controls revealed no evidence of RNA degradation or RT-qPCR inhibition, and most lncRNAs were robustly detectable in pulmonary tissue. In plasma, lncRNA levels were the lowest among several different RNA species examined, and this was generalizable to other chronic and acute vascular conditions including coronary artery disease, acute coronary syndrome, and septic shock. In addition, two of three previously reported circulating lncRNA biomarker candidates were not detectable in any of the plasma samples. This study reveals new insight on the relative levels of lncRNAs in circulation, which has important implications for their potential development as biomarkers.
Collapse
Affiliation(s)
- Kenny Schlosser
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jennifer Hanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Jim Dimitroulakos
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Louise Pilote
- Division of General Internal Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Dias GB, Heringer P, Kuhn GCS. Helitrons in Drosophila: Chromatin modulation and tandem insertions. Mob Genet Elements 2016; 6:e1154638. [PMID: 27141326 DOI: 10.1080/2159256x.2016.1154638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022] Open
Abstract
Although Helitrons were discovered 15 y ago, they still represent an elusive group of transposable elements (TEs). They are thought to transpose via a rolling-circle mechanism, but no transposition assay has yet been conducted. We have recently characterized a group of Helitrons in Drosophila, named DINE-TR1, that display interesting features, including pronounced enrichment at β-heterochromatin, multiple tandem insertions (TIs) of the entire TE, and that experienced at least 2 independent expansion events of its internal tandem repeats (TRs) in distant Drosophila lineages. Here we discuss 2 aspects of TE dynamics displayed by the DINE-TR1 Helitrons: (i) the general evolutionary impact of piRNA-guided heterochromatin formation via TE-derived TR expansion and (ii) the possible mechanisms that could account for the recurrent TIs of Helitrons.
Collapse
Affiliation(s)
- Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Brunet TDP, Doolittle WF. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements. Genome Biol Evol 2015; 7:2445-57. [PMID: 26253318 PMCID: PMC4558868 DOI: 10.1093/gbe/evv152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of several issues at play in the renewed debate over “junk DNA” is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to “speed evolution” or as an “evolutionary repository” could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness—or are instead junk— is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class.
Collapse
Affiliation(s)
- Tyler D P Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Arrigo P, Pulliero A. Effect of Environmental Chemical Stress on Nuclear Noncoding RNA Involved in Epigenetic Control. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761703. [PMID: 26339639 PMCID: PMC4538421 DOI: 10.1155/2015/761703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022]
Abstract
In the last decade the role of noncoding RNAs (ncRNAs) emerges not only as key elements of posttranscriptional gene silencing, but also as important players of epigenetic regulation. New kind and new functions of ncRNAs are continuously discovered and one of their most important roles is the mediation of environmental signals, both physical and chemical. The activity of cytoplasmic short ncRNA is extensively studied, in spite of the fact that their function and role in the nuclear compartment are not yet completely unraveled. Cellular nucleus contains a multiplicity of long and short ncRNAs controlling at different levels transcriptional and epigenetic processes. In addition, some ncRNAs are involved in RNA editing and quality control. In this paper we review the existing knowledge dealing with how chemical stressors can influence the functionality of short nuclear ncRNAs. Furthermore, we perform bioinformatics analyses indicating that chemical environmental stressors not only induce DNA damage but also influence the mechanism of ncRNAs production and control.
Collapse
Affiliation(s)
- Patrizio Arrigo
- National Research Council (CNR), Institute for Macromolecular Studies (ISMAC), Via De Marini 6, 16149 Genoa, Italy
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
18
|
Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat Commun 2015; 6:6386. [PMID: 25722057 PMCID: PMC4351625 DOI: 10.1038/ncomms7386] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/26/2015] [Indexed: 01/27/2023] Open
Abstract
Plant phenotypes respond to environmental change, an adaptive capacity that is at least partly transgenerational. However, epigenetic components of this interplay are difficult to measure. Depletion of the nuclear-encoded protein MSH1 causes dramatic and heritable changes in plant development, and here we show that crossing these altered plants with isogenic wild type produces epi-lines with heritable, enhanced growth vigour. Pericentromeric DNA hypermethylation occurs in a subset of msh1 mutants, indicative of heightened transposon repression, while enhanced growth epi-lines show large chromosomal segments of differential CG methylation, reflecting genome-wide reprogramming. When seedlings are treated with 5-azacytidine, root growth of epi-lines is restored to wild-type levels, implicating hypermethylation in enhanced growth. Grafts of wild-type floral stems to mutant rosettes produce progeny with enhanced growth and altered CG methylation strikingly similar to epi-lines, indicating a mobile signal when MSH1 is downregulated, and confirming the programmed nature of methylome and phenotype changes. Suppression of MutS HOMOLOGUE 1 (MSH1), a plant protein targeted to mitochondria and plastids, causes a variety of phenotypes. Here Virdi et al. show that MSH1 depletion in Arabidopsis results in heritable changes in nuclear DNA methylation, which can lead to enhanced growth vigour.
Collapse
|
19
|
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet 2015; 6:2. [PMID: 25674102 PMCID: PMC4306305 DOI: 10.3389/fgene.2015.00002] [Citation(s) in RCA: 557] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022] Open
Abstract
The genomes of large multicellular eukaryotes are mostly comprised of non-protein coding DNA. Although there has been much agreement that a small fraction of these genomes has important biological functions, there has been much debate as to whether the rest contributes to development and/or homeostasis. Much of the speculation has centered on the genomic regions that are transcribed into RNA at some low level. Unfortunately these RNAs have been arbitrarily assigned various names, such as “intergenic RNA,” “long non-coding RNAs” etc., which have led to some confusion in the field. Many researchers believe that these transcripts represent a vast, unchartered world of functional non-coding RNAs (ncRNAs), simply because they exist. However, there are reasons to question this Panglossian view because it ignores our current understanding of how evolution shapes eukaryotic genomes and how the gene expression machinery works in eukaryotic cells. Although there are undoubtedly many more functional ncRNAs yet to be discovered and characterized, it is also likely that many of these transcripts are simply junk. Here, we discuss how to determine whether any given ncRNA has a function. Importantly, we advocate that in the absence of any such data, the appropriate null hypothesis is that the RNA in question is junk.
Collapse
Affiliation(s)
| | - Eliza S Lee
- Department of Biochemistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
20
|
Doolittle WF, Brunet TDP, Linquist S, Gregory TR. Distinguishing between "function" and "effect" in genome biology. Genome Biol Evol 2014; 6:1234-7. [PMID: 24814287 PMCID: PMC4041003 DOI: 10.1093/gbe/evu098] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Much confusion in genome biology results from conflation of possible meanings of the word “function.” We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Tyler D P Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, ON, Canada
| |
Collapse
|
21
|
Affiliation(s)
- Alexander F. Palazzo
- University of Toronto, Department of Biochemistry, Toronto, Ontario, Canada
- * E-mail: (AP); (TG)
| | - T. Ryan Gregory
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
- * E-mail: (AP); (TG)
| |
Collapse
|