1
|
Hoang KL, Read TD, King KC. Incomplete immunity in a natural animal-microbiota interaction selects for higher pathogen virulence. Curr Biol 2024; 34:1357-1363.e3. [PMID: 38430909 PMCID: PMC10962313 DOI: 10.1016/j.cub.2024.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Incomplete immunity in recovered hosts is predicted to favor more virulent pathogens upon re-infection in the population.1 The microbiota colonizing animals can generate a similarly long-lasting, partial immune response, allowing for infection but dampened disease severity.2 We tracked the evolutionary trajectories of a widespread pathogen (Pseudomonas aeruginosa), experimentally passaged through populations of nematodes immune-primed by a natural microbiota member (P. berkeleyensis). This bacterium can induce genes regulated by a mitogen-activated protein kinase (MAPK) signaling pathway effective at conferring protection against pathogen-induced death despite infection.3 Across host populations, this incomplete immunity selected for pathogens more than twice as likely to kill as those evolved in non-primed (i.e., naive) or immune-compromised (mutants with a knockout of the MAPK ortholog) control populations. Despite the higher virulence, pathogen molecular evolution in immune-primed hosts was slow and constrained. In comparison, evolving pathogens in immune-compromised hosts were characterized by substantial genomic differentiation and attenuated virulence. These findings directly attribute the incomplete host immunity induced from microbiota as a significant force shaping the virulence and evolutionary dynamics of novel infectious diseases.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Division of Infectious Diseases, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA 30322, USA.
| | - Timothy D Read
- Division of Infectious Diseases, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Kayla C King
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology & Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
2
|
Miele L, Evans RML, Cunniffe NJ, Torres-Barceló C, Bevacqua D. Evolutionary Epidemiology Consequences of Trait-Dependent Control of Heterogeneous Parasites. Am Nat 2023; 202:E130-E146. [PMID: 37963120 DOI: 10.1086/726062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractDisease control can induce both demographic and evolutionary responses in host-parasite systems. Foreseeing the outcome of control therefore requires knowledge of the eco-evolutionary feedback between control and system. Previous work has assumed that control strategies have a homogeneous effect on the parasite population. However, this is not true when control targets those traits that confer to the parasite heterogeneous levels of resistance, which can additionally be related to other key parasite traits through evolutionary trade-offs. In this work, we develop a minimal model coupling epidemiological and evolutionary dynamics to explore possible trait-dependent effects of control strategies. In particular, we consider a parasite expressing continuous levels of a trait-determining resource exploitation and a control treatment that can be either positively or negatively correlated with that trait. We demonstrate the potential of trait-dependent control by considering that the decision maker may want to minimize both the damage caused by the disease and the use of treatment, due to possible environmental or economic costs. We identify efficient strategies showing that the optimal type of treatment depends on the amount applied. Our results pave the way for the study of control strategies based on evolutionary constraints, such as collateral sensitivity and resistance costs, which are receiving increasing attention for both public health and agricultural purposes.
Collapse
|
3
|
Smith CA, Ashby B. Tolerance-conferring defensive symbionts and the evolution of parasite virulence. Evol Lett 2023; 7:262-272. [PMID: 37475754 PMCID: PMC10355178 DOI: 10.1093/evlett/qrad015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 07/22/2023] Open
Abstract
Defensive symbionts in the host microbiome can confer protection from infection or reduce the harms of being infected by a parasite. Defensive symbionts are therefore promising agents of biocontrol that could be used to control or ameliorate the impact of infectious diseases. Previous theory has shown how symbionts can evolve along the parasitism-mutualism continuum to confer greater or lesser protection to their hosts and in turn how hosts may coevolve with their symbionts to potentially form a mutualistic relationship. However, the consequences of introducing a defensive symbiont for parasite evolution and how the symbiont may coevolve with the parasite have received relatively little theoretical attention. Here, we investigate the ecological and evolutionary implications of introducing a tolerance-conferring defensive symbiont into an established host-parasite system. We show that while the defensive symbiont may initially have a positive impact on the host population, parasite and symbiont evolution tend to have a net negative effect on the host population in the long term. This is because the introduction of the defensive symbiont always selects for an increase in parasite virulence and may cause diversification into high- and low-virulence strains. Even if the symbiont experiences selection for greater host protection, this simply increases selection for virulence in the parasite, resulting in a net negative effect on the host population. Our results therefore suggest that tolerance-conferring defensive symbionts may be poor biocontrol agents for population-level infectious disease control.
Collapse
Affiliation(s)
- Cameron A Smith
- Corresponding author: Department of Mathematical Sciences, 4 West, Claverton Down, University of Bath, Bath, Somerset, BA2 7AY, United Kingdom.
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, Somerset, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, Somerset, United Kingdom
- Department of Mathematics, Simon Fraser University, Vancouver, British Colombia, Canada
- The Pacific Institute on Pathogens, Pandemics and Society (PIPPS), Simon Fraser University, Vancouver, British Colombia, Canada
| |
Collapse
|
4
|
May G, Shaw RG, Geyer CJ, Eck DJ. Do Interactions among Microbial Symbionts Cause Selection for Greater Pathogen Virulence? Am Nat 2022; 199:252-265. [DOI: 10.1086/717679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108
| | - Charles J. Geyer
- School of Statistics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel J. Eck
- Department of Statistics, University of Illinois, Champaign, Illinois 61820
| |
Collapse
|
5
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Ford SA, King KC. In Vivo Microbial Coevolution Favors Host Protection and Plastic Downregulation of Immunity. Mol Biol Evol 2021; 38:1330-1338. [PMID: 33179739 PMCID: PMC8042738 DOI: 10.1093/molbev/msaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microbiota can protect their hosts from infection. The short timescales in which microbes can evolve presents the possibility that “protective microbes” can take-over from the immune system of longer-lived hosts in the coevolutionary race against pathogens. Here, we found that coevolution between a protective bacterium (Enterococcus faecalis) and a virulent pathogen (Staphylococcus aureus) within an animal population (Caenorhabditis elegans) resulted in more disease suppression than when the protective bacterium adapted to uninfected hosts. At the same time, more protective E. faecalis populations became costlier to harbor and altered the expression of 134 host genes. Many of these genes appear to be related to the mechanism of protection, reactive oxygen species production. Crucially, more protective E. faecalis populations downregulated a key immune gene, , known to be effective against S. aureus infection. These results suggest that a microbial line of defense is favored by microbial coevolution and may cause hosts to plastically divest of their own immunity.
Collapse
Affiliation(s)
- Suzanne A Ford
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Oborník M. Photoparasitism as an Intermediate State in the Evolution of Apicomplexan Parasites. Trends Parasitol 2020; 36:727-734. [PMID: 32680786 DOI: 10.1016/j.pt.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.
| |
Collapse
|