1
|
Wale N, Freimark CB, Ramirez J, Dziuba MK, Kafri AY, Bilich R, Duffy MA. Virulence and transmission biology of the widespread, ecologically important pathogen of zooplankton, Spirobacillus cienkowskii. Appl Environ Microbiol 2024; 90:e0152923. [PMID: 39264204 PMCID: PMC11497810 DOI: 10.1128/aem.01529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/01/2024] [Indexed: 09/13/2024] Open
Abstract
Spirobacillus cienkowskii (Spirobacillus, hereafter) is a widely distributed bacterial pathogen that has significant impacts on the population dynamics of zooplankton (Daphnia spp.), particularly in months when Daphnia are asexually reproducing. However, little is known about Spirobacillus' virulence, transmission mode, and dynamics. As a result, we cannot explain the dynamics of Spirobacillus epidemics in nature or use Spirobacillus as a model pathogen, despite Daphnia's tractability as a model host. Here, we work to fill these knowledge gaps experimentally. We found that Spirobacillus is among the most virulent of Daphnia pathogens, killing its host within a week and reducing host fecundity. We further found that Spirobacillus did not transmit horizontally among hosts unless the host died or was destroyed (i.e., it is an "obligate killer"). In experiments aimed at quantifying the dynamics of horizontal transmission among asexually reproducing Daphnia, we demonstrated that Spirobacillus transmits poorly in the laboratory. In mesocosms, Spirobacillus failed to generate epidemics; in experiments wherein individual Daphnia were exposed, Spirobacillus' transmission success was low. In the (limited) set of conditions we considered, Spirobacillus' transmission success did not change with host density or pathogen dose and declined following environmental incubation. Finally, we conducted a field survey of Spirobacillus' prevalence within egg cases (ephippia) made by sexually reproducing Daphnia. We found Spirobacillus DNA in ~40% of ephippia, suggesting that, in addition to transmitting horizontally among asexually reproducing Daphnia, Spirobacillus may transmit vertically from sexually reproducing Daphnia. Our work fills critical gaps in the biology of Spirobacillus and illuminates new hypotheses vis-à-vis its life history. IMPORTANCE Spirobacillus cienkowskii is a bacterial pathogen of zooplankton, first described in the 19th century and recently placed in a new family of bacteria, the Silvanigrellaceae. Spirobacillus causes large epidemics in lake zooplankton populations and increases the probability that zooplankton will be eaten by predators. However, little is known about how Spirobacillus transmits among hosts, to what extent it reduces host survival and reproduction (i.e., how virulent it is), and what role virulence plays in Spirobacillus' life cycle. Here, we experimentally quantified Spirobacillus' virulence and showed that Spirobacillus must kill its host to transmit horizontally. We also found evidence that Spirobacillus may transmit vertically via Daphnia's seed-like egg sacks. Our work will help scientists to (i) understand Spirobacillus epidemics, (ii) use Spirobacillus as a model pathogen for the study of host-parasite interactions, and (iii) better understand the unusual group of bacteria to which Spirobacillus belongs.
Collapse
Affiliation(s)
- Nina Wale
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire B. Freimark
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin Ramirez
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ahmad Y. Kafri
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Rickard H, Cloutman-Green E, Ciric L. A microbiological survey approach to understanding the virulence factors of Pseudomonas species in healthcare sinks. J Hosp Infect 2024; 151:84-91. [PMID: 38992838 DOI: 10.1016/j.jhin.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Hospital water is involved in both the prevention and spread of healthcare-associated infections (HCAIs). Handwashing is key to reducing the transmission of pathogens, yet numerous outbreaks have been found to be caused by organisms within sinks, taps and showers. Pseudomonas aeruginosa and increasingly non-aeruginosa Pseudomonas cause waterborne HCAI, however, little is known about the virulence potential of Pseudomonas species found within hospital environments. METHODS Swabs were taken from 62 sinks within two newly opened wards at Great Ormond Street Hospital, samples were taken before and after the wards opened to understand the impact of patient occupancy on sink micro-organisms. Culturable bacteria were identified by MALDI-TOF and virulence factors assessed through phenotypic methods. RESULTS A total of 106 bacterial isolates were recovered including 24 Pseudomonas isolates. Of these 25% were identified as P. oleovorans, 21% P. aeruginosa, 17% P. composti, 13% P. alicalipha, 8% P. monteilii, 4% P. putida, 4% P. stutzeri and 8% could only be identified to genus level by MALDI-TOF. Differences were seen in both the number of Pseudomonas isolates and virulence production between the two wards, overall 25% of the Pseudomonas isolates produced pigment, 58% were capable of haemolysis, 87.5% were able to swim, 83.3% were capable of twitching motility, 33.3% produced alkaline protease and 8.3% produced gelatinase. CONCLUSIONS Results suggest that patients may be back-contaminating sinks with colonizing organisms which has ongoing implications for infection prevention and control. Additionally, this work highlights the ability of non-aeruginosa Pseudomonas to produce virulence factors traditionally associated with P. aeruginosa.
Collapse
Affiliation(s)
- H Rickard
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.
| | - E Cloutman-Green
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK; Camelia Botnar Laboratories, Department of Microbiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - L Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| |
Collapse
|
3
|
Hopkins HA, Lopezguerra C, Lau MJ, Raymann K. Making a Pathogen? Evaluating the Impact of Protist Predation on the Evolution of Virulence in Serratia marcescens. Genome Biol Evol 2024; 16:evae149. [PMID: 38961701 PMCID: PMC11332436 DOI: 10.1093/gbe/evae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
Opportunistic pathogens are environmental microbes that are generally harmless and only occasionally cause disease. Unlike obligate pathogens, the growth and survival of opportunistic pathogens do not rely on host infection or transmission. Their versatile lifestyles make it challenging to decipher how and why virulence has evolved in opportunistic pathogens. The coincidental evolution hypothesis postulates that virulence results from exaptation or pleiotropy, i.e. traits evolved for adaptation to living in one environment that have a different function in another. In particular, adaptation to avoid or survive protist predation has been suggested to contribute to the evolution of bacterial virulence (the training ground hypothesis). Here, we used experimental evolution to determine how the selective pressure imposed by a protist predator impacts the virulence and fitness of a ubiquitous environmental opportunistic bacterial pathogen that has acquired multidrug resistance: Serratia marcescens. To this aim, we evolved S. marcescens in the presence or absence of generalist protist predator, Tetrahymena thermophila. After 60 d of evolution, we evaluated genotypic and phenotypic changes by comparing evolved S. marcescens with the ancestral strain. Whole-genome shotgun sequencing of the entire evolved populations and individual isolates revealed numerous cases of parallel evolution, many more than statistically expected by chance, in genes associated with virulence. Our phenotypic assays suggested that evolution in the presence of a predator maintained virulence, whereas evolution in the absence of a predator resulted in attenuated virulence. We also found a significant correlation between virulence, biofilm formation, growth, and grazing resistance. Overall, our results provide evidence that bacterial virulence and virulence-related traits are maintained by selective pressures imposed by protist predation.
Collapse
Affiliation(s)
- Heather A Hopkins
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Christian Lopezguerra
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Meng-Jia Lau
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
4
|
Blanvillain G, Lorch JM, Joudrier N, Bury S, Cuenot T, Franzen M, Martínez-Freiría F, Guiller G, Halpern B, Kolanek A, Kurek K, Lourdais O, Michon A, Musilová R, Schweiger S, Szulc B, Ursenbacher S, Zinenko O, Hoyt JR. Contribution of host species and pathogen clade to snake fungal disease hotspots in Europe. Commun Biol 2024; 7:440. [PMID: 38600171 PMCID: PMC11006896 DOI: 10.1038/s42003-024-06092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Infectious diseases are influenced by interactions between host and pathogen, and the number of infected hosts is rarely homogenous across the landscape. Areas with elevated pathogen prevalence can maintain a high force of infection and may indicate areas with disease impacts on host populations. However, isolating the ecological processes that result in increases in infection prevalence and intensity remains a challenge. Here we elucidate the contribution of pathogen clade and host species in disease hotspots caused by Ophidiomyces ophidiicola, the pathogen responsible for snake fungal disease, in 21 species of snakes infected with multiple pathogen strains across 10 countries in Europe. We found isolated areas of disease hotspots in a landscape where infections were otherwise low. O. ophidiicola clade had important effects on transmission, and areas with multiple pathogen clades had higher host infection prevalence. Snake species further influenced infection, with most positive detections coming from species within the Natrix genus. Our results suggest that both host and pathogen identity are essential components contributing to increased pathogen prevalence.
Collapse
Affiliation(s)
- Gaëlle Blanvillain
- Biological Sciences Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Jeffrey M Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - Nicolas Joudrier
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
- Info fauna-Karch, Centre Suisse de Cartographie de la Faune (CSCF) and Centre de coordination pour la protection des reptiles et des amphibiens de Suisse (karch), Neuchâtel, Switzerland
| | - Stanislaw Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- NATRIX Herpetological Association, Wroclaw, Poland
| | - Thibault Cuenot
- LPO Bourgogne-Franche-Comté, Site de Franche-Comté, Maison de l'environnement de BFC, Besançon, France
| | - Michael Franzen
- Bavarian State Collection of Zoology (ZSM-SNSB), Munich, Germany
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | | | - Bálint Halpern
- MME BirdLife Hungary, Budapest, Hungary
- Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE-MTM, Integrative Ecology Research Group, Budapest, Hungary
| | - Aleksandra Kolanek
- NATRIX Herpetological Association, Wroclaw, Poland
- Department of Geoinformatics and Cartography, Institute of Geography and Regional Development, Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Kurek
- Department of Wildlife Conservation, Institute of Nature Conservation Polish Academy of Science, Cracow, Poland
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, ULR CNRS UMR 7372, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alix Michon
- LPO Bourgogne-Franche-Comté, Site de Franche-Comté, Maison de l'environnement de BFC, Besançon, France
| | | | - Silke Schweiger
- First Zoological Department, Herpetological Collection, Natural History Museum, Vienna, Austria
| | - Barbara Szulc
- NATRIX Herpetological Association, Wroclaw, Poland
- Department of Genetics, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Sylvain Ursenbacher
- Info fauna-Karch, Centre Suisse de Cartographie de la Faune (CSCF) and Centre de coordination pour la protection des reptiles et des amphibiens de Suisse (karch), Neuchâtel, Switzerland
- Department of Environmental Sciences, Section of Conservation Biology, University of Basel, Basel, Switzerland
- Balaton Limnological Research Institute, Tihany, Hungary
| | | | - Joseph R Hoyt
- Biological Sciences Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
5
|
Sheen JK, Rasambainarivo F, Saad-Roy CM, Grenfell BT, Metcalf CJE. Markets as drivers of selection for highly virulent poultry pathogens. Nat Commun 2024; 15:605. [PMID: 38242897 PMCID: PMC10799013 DOI: 10.1038/s41467-024-44777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
Theoretical models have successfully predicted the evolution of poultry pathogen virulence in industrialized farm contexts of broiler chicken populations. Whether there are ecological factors specific to more traditional rural farming that affect virulence is an open question. Within non-industrialized farming networks, live bird markets are known to be hotspots of transmission, but whether they could shift selection pressures on the evolution of poultry pathogen virulence has not been addressed. Here, we revisit predictions for the evolution of virulence for viral poultry pathogens, such as Newcastle's disease virus, Marek's disease virus, and influenza virus, H5N1, using a compartmental model that represents transmission in rural markets. We show that both the higher turnover rate and higher environmental persistence in markets relative to farms could select for higher optimal virulence strategies. In contrast to theoretical results modeling industrialized poultry farms, we find that cleaning could also select for decreased virulence in the live poultry market setting. Additionally, we predict that more virulent strategies selected in markets could circulate solely within poultry located in markets. Thus, we recommend the close monitoring of markets not only as hotspots of transmission, but as potential sources of more virulent strains of poultry pathogens.
Collapse
Affiliation(s)
- Justin K Sheen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Fidisoa Rasambainarivo
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Mahaliana Labs SARL, Antananarivo, Madagascar
| | - Chadi M Saad-Roy
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
6
|
Pandey A, Feuka AB, Cosgrove M, Moriarty M, Duffiney A, VerCauteren KC, Campa H, Pepin KM. Wildlife vaccination strategies for eliminating bovine tuberculosis in white-tailed deer populations. PLoS Comput Biol 2024; 20:e1011287. [PMID: 38175850 DOI: 10.1371/journal.pcbi.1011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Many pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases. To evaluate the effect of vaccinating white-tailed deer (Odocoileus virginianus), in combination with harvest, in reducing and eliminating bovine tuberculosis from deer populations in Michigan, we developed a mechanistic age-structured disease transmission model for bovine tuberculosis with integrated disease management. We evaluated the impact of pulse vaccination across a range of vaccine properties. Pulse vaccination was effective for reducing disease prevalence rapidly with even low (30%) to moderate (60%) vaccine coverage of the susceptible and exposed deer population and was further improved when combined with increased harvest. The impact of increased harvest depended on the relative strength of transmission modes, i.e., direct vs indirect transmission. Vaccine coverage and efficacy were the most important vaccine properties for reducing and eliminating disease from the local population. By fitting the model to the core endemic area of bovine tuberculosis in Michigan, USA, we identified feasible integrated management strategies involving vaccination and increased harvest that reduced disease prevalence in free-ranging deer. Few scenarios led to disease elimination due to the chronic nature of bovine tuberculosis. A long-term commitment to regular vaccination campaigns, and further research on increasing vaccines efficacy and uptake rate in free-ranging deer are important for disease management.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Abigail B Feuka
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Melinda Cosgrove
- Wildlife Disease Laboratory, Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Megan Moriarty
- Wildlife Disease Laboratory, Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Anthony Duffiney
- Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Okemos, Michigan, United States of America
| | - Kurt C VerCauteren
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Henry Campa
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| |
Collapse
|
7
|
Hasik AZ, King KC, Hawlena H. Interspecific host competition and parasite virulence evolution. Biol Lett 2023; 19:20220553. [PMID: 37130550 PMCID: PMC10734695 DOI: 10.1098/rsbl.2022.0553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Jacob Blaustein Center for
Scientific Cooperation, Ben-Gurion University of the
Negev, 8499000 Midreshet Ben-Gurion,
Israel
| | - Kayla C. King
- Department of Biology,
University of Oxford, 11a Mansfield Road,
Oxford OX1 3SZ, UK
| | - Hadas Hawlena
- Mitrani Department of Desert
Ecology, Swiss Institute for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research, Ben-Gurion
University of the Negev, 849900 Midreshet Ben-Gurion,
Israel
| |
Collapse
|
8
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
9
|
Wang L, Zhan LJ, Wise MJ. Editorial: What does not kill you makes you stronger: Interactions between environmental stresses and microbial virulence. Front Microbiol 2023; 13:1127058. [PMID: 36699596 PMCID: PMC9869246 DOI: 10.3389/fmicb.2022.1127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China,Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia,Liang Wang ✉
| | - Ling-Jun Zhan
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing, China,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Michael J. Wise
- Department of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, Australia,The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, WA, Australia,*Correspondence: Michael J. Wise ✉
| |
Collapse
|
10
|
Virulence evolution during a naturally occurring parasite outbreak. Evol Ecol 2023; 37:113-129. [PMID: 35431396 PMCID: PMC9002213 DOI: 10.1007/s10682-022-10169-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in the Daphnia-Pasteuria model system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak of Pasteuria ramosa in Daphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10169-6.
Collapse
|
11
|
Elderd BD, Mideo N, Duffy MA. Looking across Scales in Disease Ecology and Evolution. Am Nat 2022; 199:51-58. [DOI: 10.1086/717176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|