1
|
van Schelt AS, Gottwald LM, Wassenaar NPM, Runge JH, Sinkus R, Stoker J, Nederveen AJ, Schrauben EM. Single Breath-Hold MR Elastography for Fast Biomechanical Probing of Pancreatic Stiffness. J Magn Reson Imaging 2024; 59:688-698. [PMID: 37194646 DOI: 10.1002/jmri.28773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE Prospective. POPULATION A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE 3-T, GRE Ristretto MRE. ASSESSMENT First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2.
Collapse
Affiliation(s)
- Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Lukas M Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ralph Sinkus
- Imaging Sciences and Biomedical Engineering, Kings College London, London, UK
- Department of Radiology, Université de Paris, Paris, France
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Endocrinology, Amsterdam Gastroenterology, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
van Schelt AS, Beek KJ, Wassenaar NPM, Schrauben EM, Runge JH, Gecse KB, van der Bilt JDW, Neefjes-Borst EA, Buskens CJ, Nederveen AJ, Stoker J. Viscoelastic properties of small bowel mesentery at MR elastography in Crohn's disease: a prospective cross-sectional exploratory study. Eur Radiol Exp 2023; 7:53. [PMID: 37718360 PMCID: PMC10505604 DOI: 10.1186/s41747-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Creeping fat is a pathological feature of small bowel Crohn's disease (CD), with literature suggesting that bowel resection with extended mesenteric resection is related to less postoperative recurrences. Conventional imaging is unable to accurately quantify the disease involvement (i.e., fibrosis) of creeping fat. Quantification of disease involvement could be useful in decision-making for additional extended mesenteric resection. We investigated the feasibility of magnetic resonance elastography (MRE) of the mesentery and if MRE is capable to detect fibrotic disease involvement of mesentery in active CD. METHODS Multifrequency MRE yielded spatial stiffness (shear wave speed, SWS, |G*|) and fluidity maps (φ). Viscoelastic properties of seven CD patients' mesentery were compared to age- and sex-matched healthy volunteers (HV) (Mann-Whitney U-test). Within CD patients, the affected and "presumably" unaffected mesentery were compared (Wilcoxon-signed rank test). Repeatability was tested in 15 HVs (Bland-Altman analysis, coefficient of variation [CoV]). Spearman rank correlations were used to investigate the relation between microscopically scored amount of mesenteric fibrosis and viscoelastic parameters. RESULTS SWS, |G*|, and φ of affected mesentery in CD were higher compared to HV (p = 0.017, p = 0.001, p = 0.017). Strong correlations were found between percentage of area of mesenteric fibrosis and SWS and |G*| (p < 0.010). No differences were found within CD between affected and presumably unaffected mesentery. Repeatability of SWS showed 95% limits of agreement of (-0.09, 0.13 m/s) and within-subject CoV of 5.3%. CONCLUSION MRE may have the potential to measure fibrotic disease involvement of the mesentery in CD, possibly guiding clinical decision-making with respect to extended mesenteric resection. TRIAL REGISTRATION Dutch trial register, NL9105 , registered 7 December 2020. RELEVANCE STATEMENT MRE may have the potential to measure the amount of mesenteric fibrosis of the affected mesenteric fat in active Crohn's disease, giving more insight into disease progression and could potentially play a role in clinical decision-making for extended mesenteric resection. KEY POINTS • MRE of the mesentery in patients with active CD is feasible. • Fluidity and stiffness of the mesentery increase in active CD, while stiffness correlates with the histopathological amount of mesenteric fibrosis. • MRE provides biomarkers to quantify mesenteric disease activity in active CD.
Collapse
Affiliation(s)
- Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kim Johanna Beek
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands.
| | - Nienke Petronella Maria Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Krisztina Barbara Gecse
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jarmila D W van der Bilt
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Andra Neefjes-Borst
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christianne Johanna Buskens
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Meyer T, Marticorena Garcia S, Tzschätzsch H, Herthum H, Shahryari M, Stencel L, Braun J, Kalra P, Kolipaka A, Sack I. Comparison of inversion methods in MR elastography: An open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brain. Magn Reson Med 2022; 88:1840-1850. [PMID: 35691940 DOI: 10.1002/mrm.29320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Magnetic resonance elastography (MRE) maps the viscoelastic properties of soft tissues for diagnostic purposes. However, different MRE inversion methods yield different results, which hinder comparison of values, standardization, and establishment of quantitative MRE markers. Here, we introduce an expandable, open-access, webserver-based platform that offers multiple inversion techniques for multifrequency, 3D MRE data. METHODS The platform comprises a data repository and standard MRE inversion methods including local frequency estimation (LFE), direct-inversion based multifrequency dual elasto-visco (MDEV) inversion, and wavenumber-based (k-) MDEV. The use of the platform is demonstrated in phantom data and in vivo multifrequency MRE data of the kidneys and brains of healthy volunteers. RESULTS Detailed maps of stiffness were generated by all inversion methods showing similar detail of anatomy. Specifically, the inner renal cortex had higher shear wave speed (SWS) than renal medulla and outer cortex without lateral differences. k-MDEV yielded higher SWS values than MDEV or LFE (full kidney/brain k-MDEV: 2.71 ± 0.19/1.45 ± 0.14 m/s, MDEV: 2.14 ± 0.16/0.99 ± 0.11 m/s, LFE: 2.12 ± 0.15/0.89 ± 0.06 m/s). CONCLUSION The freely accessible platform supports the comparison of MRE results obtained with different inversion methods, filter thresholds, or excitation frequencies, promoting reproducibility in MRE across community-developed methods.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Herthum
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Stencel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Prateek Kalra
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ozkaya E, Triolo ER, Rezayaraghi F, Abderezaei J, Meinhold W, Hong K, Alipour A, Kennedy P, Fleysher L, Ueda J, Balchandani P, Eriten M, Johnson CL, Yang Y, Kurt M. Brain-mimicking phantom for biomechanical validation of motion sensitive MR imaging techniques. J Mech Behav Biomed Mater 2021; 122:104680. [PMID: 34271404 DOI: 10.1016/j.jmbbm.2021.104680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Motion sensitive MR imaging techniques allow for the non-invasive evaluation of biological tissues by using different excitation schemes, including physiological/intrinsic motions caused by cardiac pulsation or respiration, and vibrations caused by an external actuator. The mechanical biomarkers extracted through these imaging techniques have been shown to hold diagnostic value for various neurological disorders and conditions. Amplified MRI (aMRI), a cardiac gated imaging technique, can help track and quantify low frequency intrinsic motion of the brain. As for high frequency actuation, the mechanical response of brain tissue can be measured by applying external high frequency actuation in combination with a motion sensitive MR imaging sequence called Magnetic Resonance Elastography (MRE). Due to the frequency-dependent behavior of brain mechanics, there is a need to develop brain phantom models that can mimic the broadband mechanical response of the brain in order to validate motion-sensitive MR imaging techniques. Here, we have designed a novel phantom test setup that enables both the low and high frequency responses of a brain-mimicking phantom to be captured, allowing for both aMRI and MRE imaging techniques to be applied on the same phantom model. This setup combines two different vibration sources: a pneumatic actuator, for low frequency/intrinsic motion (1 Hz) for use in aMRI, and a piezoelectric actuator for high frequency actuation (30-60 Hz) for use in MRE. Our results show that in MRE experiments performed from 30 Hz through 60 Hz, propagating shear waves attenuate faster at higher driving frequencies, consistent with results in the literature. Furthermore, actuator coupling has a substantial effect on wave amplitude, with weaker coupling causing lower amplitude wave field images, specifically shown in the top-surface shear loading configuration. For intrinsic actuation, our results indicate that aMRI linearly amplifies motion up to at least an amplification factor of 9 for instances of both visible and sub-voxel motion, validated by varying power levels of pneumatic actuation (40%-80% power) under MR, and through video analysis outside the MRI scanner room. While this investigation used a homogeneous brain-mimicking phantom, our setup can be used to study the mechanics of non-homogeneous phantom configurations with bio-interfaces in the future.
Collapse
Affiliation(s)
- E Ozkaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - E R Triolo
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - F Rezayaraghi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - J Abderezaei
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - W Meinhold
- The George W. Woodruff of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - K Hong
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - A Alipour
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - P Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - L Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Ueda
- The George W. Woodruff of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - P Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - M Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - C L Johnson
- Department of Biomedical Engineering, University of Deleware, Newark, DE, 19716, USA
| | - Y Yang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - M Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
5
|
Lilaj L, Herthum H, Meyer T, Shahryari M, Bertalan G, Caiazzo A, Braun J, Fischer T, Hirsch S, Sack I. Inversion-recovery MR elastography of the human brain for improved stiffness quantification near fluid-solid boundaries. Magn Reson Med 2021; 86:2552-2561. [PMID: 34184306 DOI: 10.1002/mrm.28898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE In vivo MR elastography (MRE) holds promise as a neuroimaging marker. In cerebral MRE, shear waves are introduced into the brain, which also stimulate vibrations in adjacent CSF, resulting in blurring and biased stiffness values near brain surfaces. We here propose inversion-recovery MRE (IR-MRE) to suppress CSF signal and improve stiffness quantification in brain surface areas. METHODS Inversion-recovery MRE was demonstrated in agar-based phantoms with solid-fluid interfaces and 11 healthy volunteers using 31.25-Hz harmonic vibrations. It was performed by standard single-shot, spin-echo EPI MRE following 2800-ms IR preparation. Wave fields were acquired in 10 axial slices and analyzed for shear wave speed (SWS) as a surrogate marker of tissue stiffness by wavenumber-based multicomponent inversion. RESULTS Phantom SWS values near fluid interfaces were 7.5 ± 3.0% higher in IR-MRE than MRE (P = .01). In the brain, IR-MRE SNR was 17% lower than in MRE, without influencing parenchymal SWS (MRE: 1.38 ± 0.02 m/s; IR-MRE: 1.39 ± 0.03 m/s; P = .18). The IR-MRE tissue-CSF interfaces appeared sharper, showing 10% higher SWS near brain surfaces (MRE: 1.01 ± 0.03 m/s; IR-MRE: 1.11 ± 0.01 m/s; P < .001) and 39% smaller ventricle sizes than MRE (P < .001). CONCLUSIONS Our results show that brain MRE is affected by fluid oscillations that can be suppressed by IR-MRE, which improves the depiction of anatomy in stiffness maps and the quantification of stiffness values in brain surface areas. Moreover, we measured similar stiffness values in brain parenchyma with and without fluid suppression, which indicates that shear wavelengths in solid and fluid compartments are identical, consistent with the theory of biphasic poroelastic media.
Collapse
Affiliation(s)
- Ledia Lilaj
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Herthum
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alfonso Caiazzo
- Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Hirsch
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Simulation of harmonic shear waves in the human brain and comparison with measurements from magnetic resonance elastography. J Mech Behav Biomed Mater 2021; 118:104449. [PMID: 33770585 DOI: 10.1016/j.jmbbm.2021.104449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) provides a non-invasive method to characterize the mechanical response of the living brain subjected to harmonic loading conditions. The peak magnitude of the harmonic strain is small and the excitation results in harmless deformation waves propagating through the brain. In this paper, we describe a three-dimensional computational model of the brain for comparison of simulated harmonic deformations of the brain with MRE measurements. Relevant substructures of the head were constructed from MRI scans. Harmonic wave motions in a live human brain obtained in an MRE experiment were used to calibrate the viscoelastic properties at 50 Hz and assess accuracy of the computational model by comparing the measured and the simulated harmonic response of the brain. Quantitative comparison of strain field from simulations with measured data from MRE shows that the harmonic deformation of the brain tissue is responsive to changes in the viscoelastic properties, loss and storage moduli, of the brain. The simulation results demonstrate, in agreement with MRE measurements, that the presence of the falx and tentorium membranes alter the spatial distribution of harmonic deformation field and peak strain amplitudes in the computational model of the brain.
Collapse
|
7
|
Arani A, Manduca A, Ehman RL, Huston Iii J. Harnessing brain waves: a review of brain magnetic resonance elastography for clinicians and scientists entering the field. Br J Radiol 2021; 94:20200265. [PMID: 33605783 PMCID: PMC8011257 DOI: 10.1259/bjr.20200265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brain magnetic resonance elastography (MRE) is an imaging technique capable of accurately and non-invasively measuring the mechanical properties of the living human brain. Recent studies have shown that MRE has potential to provide clinically useful information in patients with intracranial tumors, demyelinating disease, neurodegenerative disease, elevated intracranial pressure, and altered functional states. The objectives of this review are: (1) to give a general overview of the types of measurements that have been obtained with brain MRE in patient populations, (2) to survey the tools currently being used to make these measurements possible, and (3) to highlight brain MRE-based quantitative biomarkers that have the highest potential of being adopted into clinical use within the next 5 to 10 years. The specifics of MRE methodology strategies are described, from wave generation to material parameter estimations. The potential clinical role of MRE for characterizing and planning surgical resection of intracranial tumors and assessing diffuse changes in brain stiffness resulting from diffuse neurological diseases and altered intracranial pressure are described. In addition, the emerging technique of functional MRE, the role of artificial intelligence in MRE, and promising applications of MRE in general neuroscience research are presented.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
8
|
Guenthner C, Kozerke S. Encoding and readout strategies in magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3919. [PMID: 29806865 DOI: 10.1002/nbm.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/15/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance elastography (MRE) has evolved significantly since its inception. Advances in motion-encoding gradient design and readout strategies have led to improved encoding and signal-to-noise ratio (SNR) efficiencies, which in turn allow for higher spatial resolution, increased coverage, and/or shorter scan times. The purpose of this review is to summarize MRE wave-encoding and readout approaches in a unified mathematical framework to allow for a comparative assessment of encoding and SNR efficiency of the various methods available. Besides standard full- and fractional-wave-encoding approaches, advanced techniques including flow compensation, sample interval modulation and multi-shot encoding are considered. Signal readout using fast k-space trajectories, reduced field of view, multi-slice, and undersampling techniques are summarized and put into perspective. The review is concluded with a foray into displacement and diffusion encoding as alternative and/or complementary techniques.
Collapse
Affiliation(s)
- Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Yin Z, Romano AJ, Manduca A, Ehman RL, Huston J. Stiffness and Beyond: What MR Elastography Can Tell Us About Brain Structure and Function Under Physiologic and Pathologic Conditions. Top Magn Reson Imaging 2018; 27:305-318. [PMID: 30289827 PMCID: PMC6176744 DOI: 10.1097/rmr.0000000000000178] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain magnetic resonance elastography (MRE) was developed on the basis of a desire to "palpate by imaging" and is becoming a powerful tool in the investigation of neurophysiological and neuropathological states. Measurements are acquired with a specialized MR phase-contrast pulse sequence that can detect tissue motion in response to an applied external or internal excitation. The tissue viscoelasticity is then reconstructed from the measured displacement. Quantitative characterization of brain viscoelastic behaviors provides us an insight into the brain structure and function by assessing the mechanical rigidity, viscosity, friction, and connectivity of brain tissues. Changes in these features are associated with inflammation, demyelination, and neurodegeneration that contribute to brain disease onset and progression. Here, we review the basic principles and limitations of brain MRE and summarize its current neuroanatomical studies and clinical applications to the most common neurosurgical and neurodegenerative disorders, including intracranial tumors, dementia, multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury. Going forward, further improvement in acquisition techniques, stable inverse reconstruction algorithms, and advanced numerical, physical, and preclinical validation models is needed to increase the utility of brain MRE in both research and clinical applications.
Collapse
Affiliation(s)
- Ziying Yin
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | | | - Armando Manduca
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
10
|
Guenthner C, Runge JH, Sinkus R, Kozerke S. Analysis and improvement of motion encoding in magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3908. [PMID: 29601114 PMCID: PMC6585970 DOI: 10.1002/nbm.3908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 05/05/2023]
Abstract
Magnetic resonance elastography (MRE) utilizes phase contrast magnetic resonance imaging (MRI), which is phase locked to externally generated mechanical vibrations, to measure the three-dimensional wave displacement field. At least four measurements with linear-independent encoding directions are necessary to correct for spurious phase contributions if effects from imaging gradients are non-negligible. In MRE, three encoding schemes have been used: unbalanced four- and six-point and balanced four-point ('tetrahedral') encoding. The first two sensitize to motion with orthogonal gradients, with the four-point method acquiring a single reference scan without motion sensitization, whereas three additional scans with inverted gradients are used with six-point encoding, leading to two-fold higher displacement-to-noise ratio (DNR) and 50% longer scan duration. Balanced four-point (tetrahedral) encoding encodes along the four diagonals of a cube, with one direction serving as a reference for the other three encoding directions, similar to four-point encoding. The objective of this work is to introduce a theoretical framework to compare different motion sensitization strategies with respect to their motion encoding efficiency in two fundamental encoding limits, the gradient strength limit and the dynamic range limit, which are both placed in relation to conventional gradient recalled echo (GRE)- and spin echo (SE)-based MRE sequences. We apply the framework to the three aforementioned schemes and show that the motion encoding efficiency of unbalanced four- and six-point encoding schemes in the gradient-limited regime can be increased by a factor of 1.5 when using all physical gradient channels concurrently. Furthermore, it is demonstrated that reversing the direction of the reference in balanced four-point (tetrahedral) encoding results in the Hadamard encoding scheme, which leads to increased DNR by 2 compared with balanced four-point encoding and 2.8 compared with unbalanced four-point encoding. As an example, we show that optimal encoding can be utilized to reduce the acquisition time of standard liver MRE in vivo from four to two breath holds.
Collapse
Affiliation(s)
- Christian Guenthner
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Jurgen Henk Runge
- Division of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Radiology and Nuclear MedicineAcademic Medical CenterAmsterdamthe Netherlands
| | - Ralph Sinkus
- Division of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| |
Collapse
|
11
|
Progressive supranuclear palsy and idiopathic Parkinson’s disease are associated with local reduction of in vivo brain viscoelasticity. Eur Radiol 2018; 28:3347-3354. [DOI: 10.1007/s00330-017-5269-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
12
|
Testu J, McGarry M, Dittmann F, Weaver J, Paulsen K, Sack I, Van Houten E. Viscoelastic power law parameters of in vivo human brain estimated by MR elastography. J Mech Behav Biomed Mater 2017; 74:333-341. [DOI: 10.1016/j.jmbbm.2017.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
|
13
|
Fehlner A, Hirsch S, Weygandt M, Christophel T, Barnhill E, Kadobianskyi M, Braun J, Bernarding J, Lützkendorf R, Sack I, Hetzer S. Increasing the spatial resolution and sensitivity of magnetic resonance elastography by correcting for subject motion and susceptibility-induced image distortions. J Magn Reson Imaging 2016; 46:134-141. [DOI: 10.1002/jmri.25516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andreas Fehlner
- Department of Radiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Sebastian Hirsch
- Institute of Medical Informatics; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Martin Weygandt
- Berlin Center for Advanced Neuroimaging; Charité - Universitätsmedizin Berlin; Berlin Germany
- Bernstein Center for Computational Neuroscience; Berlin Germany
| | - Thomas Christophel
- Berlin Center for Advanced Neuroimaging; Charité - Universitätsmedizin Berlin; Berlin Germany
- Bernstein Center for Computational Neuroscience; Berlin Germany
| | - Eric Barnhill
- Department of Radiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Mykola Kadobianskyi
- Berlin Center for Advanced Neuroimaging; Charité - Universitätsmedizin Berlin; Berlin Germany
- Bernstein Center for Computational Neuroscience; Berlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Johannes Bernarding
- Institute of Biometry and Medical Informatics; Otto-von-Guericke University; Magdeburg Germany
| | - Ralf Lützkendorf
- Institute of Biometry and Medical Informatics; Otto-von-Guericke University; Magdeburg Germany
| | - Ingolf Sack
- Department of Radiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging; Charité - Universitätsmedizin Berlin; Berlin Germany
- Bernstein Center for Computational Neuroscience; Berlin Germany
| |
Collapse
|
14
|
Hollis L, Conlisk N, Thomas-Seale LEJ, Roberts N, Pankaj P, Hoskins PR. Computational simulations of MR elastography in idealised abdominal aortic aneurysms. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/4/045016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
McGrath DM, Ravikumar N, Beltrachini L, Wilkinson ID, Frangi AF, Taylor ZA. Evaluation of wave delivery methodology for brain MRE: Insights from computational simulations. Magn Reson Med 2016; 78:341-356. [PMID: 27416890 DOI: 10.1002/mrm.26333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE MR elastography (MRE) of the brain is being explored as a biomarker of neurodegenerative disease such as dementia. However, MRE measures for healthy brain have varied widely. Differing wave delivery methodologies may have influenced this, hence finite element-based simulations were performed to explore this possibility. METHODS The natural frequencies of a series of cranial models were calculated, and MRE-associated vibration was simulated for different wave delivery methods at varying frequency, using simple isotropic viscoelastic material models for the brain. Displacement fields and the corresponding brain constitutive properties estimated by standard inversion techniques were compared across delivery methods and frequencies. RESULTS The delivery methods produced widely different MRE displacement fields and inversions. Furthermore, resonances at natural frequencies influenced the displacement patterns. Consequently, some delivery methods led to lower inversion errors than others, and the error on the storage modulus varied by up to 11% between methods. CONCLUSION Wave delivery has a considerable impact on brain MRE reliability. Assuming small variations in brain biomechanics, as recently reported to accompany neurodegenerative disease (e.g., 7% for Alzheimer's disease), the effect of wave delivery is important. Hence, a consensus should be established on a consistent methodology to ensure diagnostic and prognostic consistency. Magn Reson Med 78:341-356, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Deirdre M McGrath
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- Academic Unit of Radiology, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Nishant Ravikumar
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Leandro Beltrachini
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Academic Unit of Radiology, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Alejandro F Frangi
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Zeike A Taylor
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Fehlner A, Behrens JR, Streitberger KJ, Papazoglou S, Braun J, Bellmann-Strobl J, Ruprecht K, Paul F, Würfel J, Sack I. Higher-resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome. J Magn Reson Imaging 2015; 44:51-8. [PMID: 26714969 DOI: 10.1002/jmri.25129] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To assess if higher-resolution magnetic resonance elastography (MRE) is a technique that can measure the in vivo mechanical properties of brain tissue and is sensitive to early signatures of brain tissue degradation in patients with clinically isolated syndrome (CIS). MATERIALS AND METHODS Seventeen patients with CIS and 33 controls were investigated by MRE with a 3T MRI scanner. Full-wave field data were acquired at seven drive frequencies from 30 to 60 Hz. The spatially resolved higher-resolution maps of magnitude |G*| and phase angle φ of the complex-valued shear modulus were obtained in addition to springpot model parameters. These parameters were spatially averaged in white matter (WM) and whole-brain regions and correlated with clinical and radiological parameters. RESULTS Spatially resolved MRE revealed that CIS reduced WM viscoelasticity, independent of imaging markers of multiple sclerosis and clinical scores. |G*| was reduced by 14% in CIS (1.4 ± 0.2 kPa vs. 1.7 ± 0.2 kPa, P < 0.001, 95% confidence interval [CI] [-0.4, -0.1] kPa), while φ (0.66 ± 0.04 vs. 0.67 ± 0.04, P = 0.65, 95% CI [-0.04, 0.02]) remained unaltered. Springpot-based shear elasticity showed only a trend of CIS-related reduction (3.4 ± 0.5 kPa vs. 3.7 ± 0.5 kPa, P = 0.06, 95% CI [-0.6, 0.02] kPa) in the whole brain. CONCLUSION We demonstrate that CIS leads to significantly reduced elasticity of brain parenchyma, raising the prospect of using MRE as an imaging marker for subtle and diffuse tissue damage in neuroinflammatory diseases. J. Magn. Reson. Imaging 2016;44:51-58.
Collapse
Affiliation(s)
- Andreas Fehlner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janina Ruth Behrens
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kaspar-Josche Streitberger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Papazoglou
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Würfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Medical Image Analysis Center Basel, Switzerland
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
McGrath DM, Ravikumar N, Wilkinson ID, Frangi AF, Taylor ZA. Magnetic resonance elastography of the brain: An in silico study to determine the influence of cranial anatomy. Magn Reson Med 2015; 76:645-62. [PMID: 26417988 DOI: 10.1002/mrm.25881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/11/2015] [Accepted: 07/19/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Magnetic resonance elastography (MRE) of the brain has demonstrated potential as a biomarker of neurodegenerative disease such as dementia but requires further evaluation. Cranial anatomical features such as the falx cerebri and tentorium cerebelli membranes may influence MRE measurements through wave reflection and interference and tissue heterogeneity at their boundaries. We sought to determine the influence of these effects via simulation. METHODS MRE-associated mechanical stimulation of the brain was simulated using steady state harmonic finite element analysis. Simulations of geometrical models and anthropomorphic brain models derived from anatomical MRI data of healthy individuals were compared. Constitutive parameters were taken from MRE measurements for healthy brain. Viscoelastic moduli were reconstructed from the simulated displacement fields and compared with ground truth. RESULTS Interference patterns from reflections and heterogeneity resulted in artifacts in the reconstructions of viscoelastic moduli. Artifacts typically occurred in the vicinity of boundaries between different tissues within the cranium, with a magnitude of 10%-20%. CONCLUSION Given that MRE studies for neurodegenerative disease have reported only marginal variations in brain elasticity between controls and patients (e.g., 7% for Alzheimer's disease), the predicted errors are a potential confound to the development of MRE as a biomarker of dementia and other neurodegenerative diseases. Magn Reson Med 76:645-662, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deirdre M McGrath
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK.,Academic Unit of Radiology, Faculty of Medicine, Dentistry & Health, The University of Sheffield, Sheffield, UK
| | - Nishant Ravikumar
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
| | - Iain D Wilkinson
- Academic Unit of Radiology, Faculty of Medicine, Dentistry & Health, The University of Sheffield, Sheffield, UK.,INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Alejandro F Frangi
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, UK.,INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Zeike A Taylor
- CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK.,INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Mastikhin I, Barnhill M. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:1-7. [PMID: 25282441 DOI: 10.1016/j.jmr.2014.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR.
Collapse
Affiliation(s)
- Igor Mastikhin
- MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Marie Barnhill
- MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
19
|
Streitberger KJ, Reiss-Zimmermann M, Freimann FB, Bayerl S, Guo J, Arlt F, Wuerfel J, Braun J, Hoffmann KT, Sack I. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. PLoS One 2014; 9:e110588. [PMID: 25338072 PMCID: PMC4206430 DOI: 10.1371/journal.pone.0110588] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022] Open
Abstract
Objective To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB). Methods Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz. Results Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07). |G*|, which in solids more relates to the material's stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001). However, some GB (5 of 22) showed increased stiffness. Conclusion GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.
Collapse
Affiliation(s)
| | | | | | - Simon Bayerl
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Arlt
- Department of Neurosurgery, Universitätsmedizin Leipzig, Leipzig, Germany
| | - Jens Wuerfel
- Institute of Neuroradiology, Universitätsmedizin Göttingen, Göttingen, Germany
- NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
20
|
Reiss-Zimmermann M, Streitberger KJ, Sack I, Braun J, Arlt F, Fritzsch D, Hoffmann KT. High Resolution Imaging of Viscoelastic Properties of Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography. Clin Neuroradiol 2014; 25:371-8. [PMID: 24916129 DOI: 10.1007/s00062-014-0311-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE In recent years Magnetic Resonance Elastography (MRE) emerged into a clinically applicable imaging technique. It has been shown that MRE is capable of measuring global changes of the viscoelastic properties of cerebral tissue. The purpose of our study was to evaluate a spatially resolved three-dimensional multi-frequent MRE (3DMMRE) for assessment of the viscoelastic properties of intracranial tumours. METHODS A total of 27 patients (63 ± 13 years) were included. All examinations were performed on a 3.0 T scanner, using a modified phase-contrast echo planar imaging sequence. We used 7 vibration frequencies in the low acoustic range with a temporal resolution of 8 dynamics per wave cycle. Post-processing included multi-frequency dual elasto-visco (MDEV) inversion to generate high-resolution maps of the magnitude |G*| and the phase angle φ of the complex valued shear modulus. RESULTS The tumour entities included in this study were: glioblastoma (n = 11), anaplastic astrocytoma (n = 3), meningioma (n = 7), cerebral metastasis (n = 5) and intracerebral abscess formation (n = 1). Primary brain tumours and cerebral metastases were not distinguishable in terms of |G*| and φ. Glioblastoma presented the largest range of |G*| values and a trend was delineable that glioblastoma were slightly softer than WHO grade III tumours. In terms of φ, meningiomas were clearly distinguishable from all other entities. CONCLUSIONS In this pilot study, while analysing the viscoelastic constants of various intracranial tumour entities with an improved spatial resolution, it was possible to characterize intracranial tumours by their mechanical properties. We were able to clearly delineate meningiomas from intraaxial tumours, while for the latter group an overlap remains in viscoelastic terms.
Collapse
Affiliation(s)
- M Reiss-Zimmermann
- Department of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - K-J Streitberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - I Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - J Braun
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - F Arlt
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - D Fritzsch
- Department of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - K-T Hoffmann
- Department of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
21
|
Braun J, Guo J, Lützkendorf R, Stadler J, Papazoglou S, Hirsch S, Sack I, Bernarding J. High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T. Neuroimage 2014; 90:308-14. [DOI: 10.1016/j.neuroimage.2013.12.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/05/2013] [Accepted: 12/14/2013] [Indexed: 12/15/2022] Open
|
22
|
Montagnon E, Hadj-Henni A, Schmitt C, Cloutier G. Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:277-287. [PMID: 24474134 DOI: 10.1109/tuffc.2014.6722613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With the purpose of assessing localized rheological behavior of pathological tissues using ultrasound dynamic elastography, an analytical shear wave scattering model was used in an inverse problem framework. The proposed method was adopted to estimate the complex shear modulus of viscoelastic spheres from 200 to 450 Hz. The inverse problem was formulated and solved in the frequency domain, allowing assessment of the complex viscoelastic shear modulus at discrete frequencies. A representative rheological model of the spherical obstacle was determined by comparing storage and loss modulus behaviors with Kelvin-Voigt, Maxwell, Zener, and Jeffrey models. The proposed inversion method was validated by using an external vibrating source and acoustic radiation force. The estimation of viscoelastic properties of three-dimensional spheres made softer or harder than surrounding tissues did not require a priori rheological assumptions. The proposed method is intended to be applied in the context of breast cancer imaging.
Collapse
|
23
|
Streitberger KJ, Guo J, Tzschätzsch H, Hirsch S, Fischer T, Braun J, Sack I. High-resolution mechanical imaging of the kidney. J Biomech 2013; 47:639-44. [PMID: 24355382 DOI: 10.1016/j.jbiomech.2013.11.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 11/27/2013] [Indexed: 01/07/2023]
Abstract
The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis.
Collapse
Affiliation(s)
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Sebastian Hirsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
24
|
Guo J, Hirsch S, Fehlner A, Papazoglou S, Scheel M, Braun J, Sack I. Towards an elastographic atlas of brain anatomy. PLoS One 2013; 8:e71807. [PMID: 23977148 PMCID: PMC3743755 DOI: 10.1371/journal.pone.0071807] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa), the corpus callosum genu (CCG; 1.104±0.280 kPa), the thalamus (TH; 1.058±0.208 kPa) and the head of the caudate nucleus (HCN; 0.649±0.101 kPa). φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172), TH (1.037±0.173), CN (0.906±0.257) and WM (0.854±0.169). The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.
Collapse
Affiliation(s)
- Jing Guo
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Sebastian Hirsch
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Andreas Fehlner
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Sebastian Papazoglou
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Michael Scheel
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Juergen Braun
- Institute of Medical Informatics, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- * E-mail:
| |
Collapse
|
25
|
Hirsch S, Beyer F, Guo J, Papazoglou S, Tzschaetzsch H, Braun J, Sack I. Compression-sensitive magnetic resonance elastography. Phys Med Biol 2013; 58:5287-99. [DOI: 10.1088/0031-9155/58/15/5287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Hirsch S, Guo J, Reiter R, Schott E, Büning C, Somasundaram R, Braun J, Sack I, Kroencke TJ. Towards compression-sensitive magnetic resonance elastography of the liver: Sensitivity of harmonic volumetric strain to portal hypertension. J Magn Reson Imaging 2013; 39:298-306. [DOI: 10.1002/jmri.24165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/13/2013] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sebastian Hirsch
- Department of Radiology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Jing Guo
- Department of Radiology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Rolf Reiter
- Department of Radiology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Eckart Schott
- Department of Hepatology and Gastroenterology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Carsten Büning
- Department of Hepatology and Gastroenterology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Rajan Somasundaram
- Department of Gastroenterology, Rheumathology and Infectiology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Ingolf Sack
- Department of Radiology; Charité, Universitätsmedizin Berlin; Berlin Germany
| | - Thomas J. Kroencke
- Department of Radiology; Charité, Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
27
|
Hirsch S, Guo J, Reiter R, Papazoglou S, Kroencke T, Braun J, Sack I. MR Elastography of the Liver and the Spleen Using a Piezoelectric Driver, Single-Shot Wave-Field Acquisition, and Multifrequency Dual Parameter Reconstruction. Magn Reson Med 2013; 71:267-77. [DOI: 10.1002/mrm.24674] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Sebastian Hirsch
- Department of Radiology; Charité-Universitätsmedizin Berlin, Campus Charité Mitte; Berlin Germany
| | - Jing Guo
- Department of Radiology; Charité-Universitätsmedizin Berlin, Campus Charité Mitte; Berlin Germany
| | - Rolf Reiter
- Department of Radiology; Charité-Universitätsmedizin Berlin, Campus Charité Mitte; Berlin Germany
| | - Sebastian Papazoglou
- Department of Radiology; Charité-Universitätsmedizin Berlin, Campus Charité Mitte; Berlin Germany
| | - Thomas Kroencke
- Department of Radiology; Charité-Universitätsmedizin Berlin, Campus Charité Mitte; Berlin Germany
| | - Juergen Braun
- Institute of Medical Informatics; Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin; Berlin Germany
| | - Ingolf Sack
- Department of Radiology; Charité-Universitätsmedizin Berlin, Campus Charité Mitte; Berlin Germany
| |
Collapse
|
28
|
Hirsch S, Klatt D, Freimann F, Scheel M, Braun J, Sack I. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med 2012; 70:671-83. [PMID: 23008140 DOI: 10.1002/mrm.24499] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/07/2022]
Abstract
Motion-sensitive phase contrast magnetic resonance imaging and magnetic resonance elastography are applied for the measurement of volumetric strain and tissue compressibility in human brain. Volumetric strain calculated by the divergence operator using a biphasic effective-medium model is related to dilatation and compression of fluid spaces during harmonic stimulation of the head or during intracranial passage of the arterial pulse wave. In six volunteers, phase contrast magnetic resonance imaging showed that the central cerebrum expands at arterial pulse wave to strain values of (2.8 ± 1.9)·10(-4). The evolution of volumetric strain agrees well with the magnitude of the harmonic divergence measured in eight volunteers by magnetic resonance elastography using external activation of 25 Hz vibration frequency. Intracranial volumetric strain was proven sensitive to venous pressure altered by abdominal muscle contraction. In eight volunteers, an increase in volumetric strain due to abdominal muscle contraction of approximately 45% was observed (P = 0.0001). The corresponding compression modulus in the range of 9.5-13.5 kPa demonstrated that the compressibility of brain tissue at 25 Hz stimulation is much higher than that of water. This pilot study provides the background for compression-sensitive magnetic resonance imaging with or without external head stimulation. Volumetric strain may be sensitive to fluid flow abnormalities or pressure imbalances between vasculature and parenchyma as seen in hydrocephalus.
Collapse
Affiliation(s)
- Sebastian Hirsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Van Beers BE, Doblas S, Sinkus R. New acquisition techniques: fields of application. ACTA ACUST UNITED AC 2012; 37:155-63. [PMID: 21584637 DOI: 10.1007/s00261-011-9748-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conventional MR imaging of the liver has a central role in the assessment of liver diseases. Diffusion-weighted MR imaging, MR elastography, and time-resolved dynamic contrast-enhanced MR imaging improve the anatomical information provided by conventional MR imaging and add quantitative functional information in diffuse and focal liver diseases. Particularly, accurate detection and characterization of liver fibrosis are feasible with quantitative MR elastography, detection of liver tumors is increased with diffusion-weighted MR imaging and time-resolved dynamic contrast-enhanced MR imaging, characterization of tumors can be improved with quantitative diffusion-weighted MR imaging and MR elastography. These methods also have the potential to provide adequate biomarkers for assessing the response to treatment. Currently, the main limitations of quantitative MR imaging are related to reproducibility, standardization, and/or limited clinical data. It is important to improve and standardize the quantitative MR methods and validate their role in large multicenter trials.
Collapse
Affiliation(s)
- Bernard E Van Beers
- Department of Radiology and IPMA, INSERM UMR773, Beaujon University Hospital, University of Paris Diderot, 100 Avenue du General Leclerc, 92110, Clichy, France.
| | | | | |
Collapse
|
30
|
Hirsch S, Posnansky O, Papazoglou S, Elgeti T, Braun J, Sack I. Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 2012; 69:667-74. [PMID: 22529038 DOI: 10.1002/mrm.24294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/08/2012] [Accepted: 03/21/2012] [Indexed: 01/22/2023]
Abstract
Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs.
Collapse
Affiliation(s)
- Sebastian Hirsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Elgeti T, Tzschätzsch H, Hirsch S, Krefting D, Klatt D, Niendorf T, Braun J, Sack I. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes. Magn Reson Med 2012; 67:919-24. [DOI: 10.1002/mrm.24185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/18/2011] [Accepted: 01/05/2012] [Indexed: 12/27/2022]
|
32
|
Sack I, Streitberger KJ, Krefting D, Paul F, Braun J. The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PLoS One 2011; 6:e23451. [PMID: 21931599 PMCID: PMC3171401 DOI: 10.1371/journal.pone.0023451] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/17/2011] [Indexed: 01/11/2023] Open
Abstract
Physiological aging of the brain is accompanied by ubiquitous degeneration of neurons and oligodendrocytes. An alteration of the cellular matrix of an organ impacts its macroscopic viscoelastic properties which can be detected by magnetic resonance elastography (MRE)--to date the only method for measuring brain mechanical parameters without intervention. However, the wave patterns detected by MRE are affected by atrophic changes in brain geometry occurring in an individual's life span. Moreover, regional variability in MRE-detected age effects is expected corresponding to the regional variation in atrophy. Therefore, the sensitivity of brain MRE to brain volume and aging was investigated in 66 healthy volunteers aged 18-72. A linear decline in whole-brain elasticity was observed (-0.75%/year, R-square = 0.59, p<0.001); the rate is three times that determined by volume measurements (-0.23%/year, R-square = 0.4, p<0.001). The highest decline in elasticity (-0.92%/year, R-square = 0.43, p<0.001) was observed in a region of interest placed in the frontal lobe with minimal age-related shrinkage (-0.1%, R-square = 0.06, p = 0.043). Our results suggest that cerebral MRE can measure geometry-independent viscoelastic parameters related to intrinsic tissue structure and altered by age.
Collapse
Affiliation(s)
- Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Elkin BS, Ilankovan AI, Morrison B. A detailed viscoelastic characterization of the P17 and adult rat brain. J Neurotrauma 2011; 28:2235-44. [PMID: 21341982 DOI: 10.1089/neu.2010.1604] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain is a morphologically and mechanically heterogeneous organ. Although rat brain is commonly used as an experimental neurophysiological model for various in vivo biomechanical studies, little is known about its regional viscoelastic properties. To address this issue, we have generated viscoelastic mechanical property data for specific anatomical regions of the P17 and adult rat brain. These ages are commonly used in rat experimental models. We measured mechanical properties of both white and gray matter regions in coronal slices with a custom-designed microindentation device performing stress-relaxation indentations to 10% effective strain. Shear moduli calculated for short (100?ms), intermediate (1?sec), and long (20?sec) time points, ranged from ?1?kPa for short term moduli to ?0.4?kPa for long term moduli. Both age and anatomic region were significant factors affecting the time-dependent shear modulus. White matter regions and regions of the cerebellum were much more compliant than those of the hippocampus, cortex, and thalamus. Linear viscoelastic models (Prony series, continuous phase lag, and a power law model) were fit to the time-dependent shear modulus data. All models fit the data equally with no significant differences between them (F-test; p>0.05). The F-test was also used to statistically determine that a Prony series with three time-dependent parameters accurately fit the data with no added benefit from additional terms. The age- and region-dependent rat brain viscoelastic properties presented here will help inform future biomechanical models of the rat brain with specific and accurate regional mechanical property data.
Collapse
Affiliation(s)
- Benjamin S Elkin
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
34
|
Streitberger KJ, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, Lin K, McLaughlin J, Sprung C, Klingebiel R, Sack I. In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR IN BIOMEDICINE 2011; 24:385-392. [PMID: 20931563 DOI: 10.1002/nbm.1602] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/08/2010] [Accepted: 07/16/2010] [Indexed: 05/30/2023]
Abstract
Nearly half a century after the first report of normal pressure hydrocephalus (NPH), the pathophysiological cause of the disease still remains unclear. Several theories about the cause and development of NPH emphasize disease-related alterations of the mechanical properties of the brain. MR elastography (MRE) uniquely allows the measurement of viscoelastic constants of the living brain without intervention. In this study, 20 patients (mean age, 69.1 years; nine men, 11 women) with idiopathic (n = 15) and secondary (n = 5) NPH were examined by cerebral multifrequency MRE and compared with 25 healthy volunteers (mean age, 62.1 years; 10 men, 15 women). Viscoelastic constants related to the stiffness (µ) and micromechanical connectivity (α) of brain tissue were derived from the dynamics of storage and loss moduli within the experimentally achieved frequency range of 25-62.5 Hz. In patients with NPH, both storage and loss moduli decreased, corresponding to a softening of brain tissue of about 20% compared with healthy volunteers (p < 0.001). This loss of rigidity was accompanied by a decreasing α parameter (9%, p < 0.001), indicating an alteration in the microstructural connectivity of brain tissue during NPH. This disease-related decrease in viscoelastic constants was even more pronounced in the periventricular region of the brain. The results demonstrate distinct tissue degradation associated with NPH. Further studies are required to investigate the source of mechanical tissue damage as a potential cause of NPH-related ventricular expansions and clinical symptoms.
Collapse
|
35
|
Macé E, Cohen I, Montaldo G, Miles R, Fink M, Tanter M. In vivo mapping of brain elasticity in small animals using shear wave imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:550-8. [PMID: 20876009 DOI: 10.1109/tmi.2010.2079940] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A combination of radiation force and ultrafast ultrasound imaging is used to both generate and track the propagation of a shear wave in the brain whose local speed is directly related to stiffness, characterized by the dynamic shear modulus G*. When performed on trepanated rats, this approach called shear wave imaging (SWI) provides 3-D brain elasticity maps reaching a spatial resolution of 0.7 mm×1 mm×0.4 mm with a good reproducibility (<13%). The dynamic shear modulus of brain tissues exhibits values in the 2-25 kPa range with a mean value of 12 kPa and is quantified for different anatomical regions. The anisotropy of the shear wave propagation is studied and the first in vivo anisotropy map of brain elasticity is provided. The propagation is found to be isotropic in three gray matter regions but highly anisotropic in two white matter regions. The good temporal resolution (~10 ms per acquisition) of SWI also allows a dynamic estimation of brain elasticity to within a single cardiac cycle, showing that brain pulsatility does not transiently modify local elasticity. SWI proves its potential for the study of pathological modifications of brain elasticity both in small animal models and in clinical intra-operative imaging.
Collapse
Affiliation(s)
- Emilie Macé
- Institut Langevin, CNRS UMR 7587, INSERM U979, ESPCI ParisTech, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
36
|
Riek K, Klatt D, Nuzha H, Mueller S, Neumann U, Sack I, Braun J. Wide-range dynamic magnetic resonance elastography. J Biomech 2011; 44:1380-6. [PMID: 21295305 DOI: 10.1016/j.jbiomech.2010.12.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/22/2010] [Accepted: 12/25/2010] [Indexed: 10/18/2022]
Abstract
Tissue mechanical parameters have been shown to be highly sensitive to disease by elastography. Magnetic resonance elastography (MRE) in the human body relies on the low-dynamic range of tissue mechanics <100 Hz. In contrast, MRE suited for investigations of mice or small tissue samples requires vibration frequencies 10-20 times higher than those used in human MRE. The dispersion of the complex shear modulus (G(⁎)) prevents direct comparison of elastography data at different frequency bands and, consequently, frequency-independent viscoelastic models that fit to G(*) over a wide dynamic range have to be employed. This study presents data of G(*) of samples of agarose gel, liver, brain, and muscle measured by high-resolution MRE in a 7T-animal scanner at 200-800 Hz vibration frequency. Material constants μ and α according to the springpot model and related to shear elasticity and slope of the G(*)-dispersion were determined. Both μ and α of calf brain and bovine liver were found to be similar, while a sample of fibrotic human liver (METAVIR score of 3) displayed about fifteen times higher shear elasticity, similar to μ of bovine muscle measured in muscle fiber direction. α was the highest in fibrotic liver, followed by normal brain and liver, while muscle had the lowest α-values of all biological samples investigated in this study. As expected, the least G(*)-dispersion was seen in soft gel. The proposed technique of wide-range dynamic MRE can provide baseline data for both human MRE and high-dynamic MRE for better understanding tissue mechanics of different tissue structures.
Collapse
Affiliation(s)
- Kerstin Riek
- Department of Medical Informatics, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Shear wave induced resonance elastography of soft heterogeneous media. J Biomech 2010; 43:1488-93. [PMID: 20171643 DOI: 10.1016/j.jbiomech.2010.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/22/2022]
Abstract
In the context of ultrasound dynamic elastography imaging and characterization of venous thrombosis, we propose a method to induce mechanical resonance of confined soft heterogeneities embedded in homogenous media. Resonances are produced by the interaction of horizontally polarized shear (SH) waves with the mechanical heterogeneity. Due to such resonance phenomenon, which amplifies displacements up to 10 times compared to non-resonant condition, displacement images of the underlying structures are greatly contrasted allowing direct segmentation of the heterogeneity and a more precise measurement of displacements since the signal-to-noise ratio is enhanced. Coupled to an analytical model of wave scattering, the feasibility of shear wave induced resonance (SWIR) elastography to characterize the viscoelasticity of a mimicked venous thrombosis is demonstrated (with a maximum variability of 3% and 11% for elasticity and viscosity, respectively). More generally, the proposed method has the potential to characterize the viscoelastic properties of a variety of soft biological and industrial materials.
Collapse
|
38
|
Mariappan YK, Glaser KJ, Manduca A, Ehman RL. Cyclic motion encoding for enhanced MR visualization of slip interfaces. J Magn Reson Imaging 2009; 30:855-63. [PMID: 19787735 DOI: 10.1002/jmri.21914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To develop and test a magnetic resonance imaging-based method for assessing the mechanical shear connectivity across tissue interfaces with phantom experiments and in vivo feasibility studies. MATERIALS AND METHODS External vibrations were applied to phantoms and tissue and the differential motion on either side of interfaces within the media was mapped onto the phase of the MR images using cyclic motion encoding gradients. The phase variations within the voxels of functional slip interfaces reduced the net magnitude signal in those regions, thus enhancing their visualization. A simple two-compartment model was developed to relate this signal loss to the intravoxel phase variations. In vivo studies of the abdomen and forearm were performed to visualize slip interfaces in healthy volunteers. RESULTS The phantom experiments demonstrated that the proposed technique can assess the functionality of shear slip interfaces and they provided experimental validation for the theoretical model developed. Studies of the abdomen showed that the slip interface between the small bowel and the peritoneal wall can be visualized. In the forearm, this technique was able to depict the slip interfaces between the functional compartments of the extrinsic forearm muscles. CONCLUSION Functional shear slip interfaces can be visualized sensitively using cyclic motion encoding of externally applied tissue vibrations.
Collapse
|
39
|
Elgeti T, Laule M, Kaufels N, Schnorr J, Hamm B, Samani A, Braun J, Sack I. Cardiac MR elastography: comparison with left ventricular pressure measurement. J Cardiovasc Magn Reson 2009; 11:44. [PMID: 19900266 PMCID: PMC2777142 DOI: 10.1186/1532-429x-11-44] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/09/2009] [Indexed: 01/11/2023] Open
Abstract
PURPOSE OF STUDY To compare magnetic resonance elastography (MRE) with ventricular pressure changes in an animal model. METHODS Three pigs of different cardiac physiology (weight, 25 to 53 kg; heart rate, 61 to 93 bpm; left ventricular [LV] end-diastolic volume, 35 to 70 ml) were subjected to invasive LV pressure measurement by catheter and noninvasive cardiac MRE. Cardiac MRE was performed in a short-axis view of the heart and applying a 48.3-Hz shear-wave stimulus. Relative changes in LV-shear wave amplitudes during the cardiac cycle were analyzed. Correlation coefficients between wave amplitudes and LV pressure as well as between wave amplitudes and LV diameter were determined. RESULTS A relationship between MRE and LV pressure was observed in all three animals (R2 >or= 0.76). No correlation was observed between MRE and LV diameter (R2 CONCLUSION Externally induced shear waves provide information reflecting intraventricular pressure changes which, if substantiated in further experiments, has potential to make cardiac MRE a unique noninvasive imaging modality for measuring pressure-volume function of the heart.
Collapse
Affiliation(s)
- Thomas Elgeti
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Laule
- Department of Medicine (Cardiology, Angiology, Pulmonology) Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Nikola Kaufels
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Abbas Samani
- Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Western Ontario, Ontario, Canada
| | - Jürgen Braun
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|