1
|
Kim J, Kim J, Lee DK, Shin EJ, Chang JH. High-Intensity focused ultrasound linear array and system for dermatology treatment. ULTRASONICS 2025; 145:107477. [PMID: 39332247 DOI: 10.1016/j.ultras.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Dermatological lesions are typically located just a few millimeters below the surface of the skin, which constrains the efficacy of optical-based therapeutic methods such as photothermal and photodynamic therapy due to limited therapeutic depth caused by optical scattering. As an alternative, high-intensity focused ultrasound (HIFU) has been explored for its potential to treat a variety of dermatological conditions because it offers greater flexibility in terms of treatment depth. Since dermatological lesions have a small thickness ranging from 1.5 to 2.0 mm, high-frequency ultrasound (3-10 MHz or higher) is preferred as the focal area is proportional to the operating frequency. However, due to the difficulty in fabricating HIFU array transducers at this frequency range, the majority of HIFU treatments for dermatology rely on single element transducers. Despite the advantages of HIFU, single-element-based HIFU systems are limited in prevalent use for dermatology treatment due to their fixed focal length and mechanical movement for treatment, which can be time-consuming and unsuitable for treating multiple lesions. To address this, we present a newly developed HIFU linear array and 128-channel driving electronics specifically designed for dermatology treatment. This array consists of 128 elements, has a center frequency of 3.7 MHz, an elevation focal length of 28 mm, and an F-number of 1.27 in the elevation direction. The array has a footprint of 71.6 mm by 22 mm. Experiments using a tissue-mimicking phantom have demonstrated that the HIFU linear array and system are capable of transmitting sufficient ultrasound energy to create coagulation inside the phantom.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jinwoo Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Duk Kyu Lee
- The Ceramic Business Unit, Dong Il Technology, Ltd., Gyeonggi-do, Korea
| | - Eui-Ji Shin
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Jin Ho Chang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
2
|
Kaiser CRW, Tuma AB, Zebarjadi M, Zachs DP, Organ AJ, Lim HH, Collins MN. Rib detection using pitch-catch ultrasound and classification algorithms for a novel ultrasound therapy device. Bioelectron Med 2023; 9:25. [PMID: 37964380 PMCID: PMC10647025 DOI: 10.1186/s42234-023-00127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Noninvasive ultrasound (US) has been used therapeutically for decades, with applications in tissue ablation, lithotripsy, and physical therapy. There is increasing evidence that low intensity US stimulation of organs can alter physiological and clinical outcomes for treatment of health disorders including rheumatoid arthritis and diabetes. One major translational challenge is designing portable and reliable US devices that can be used by patients in their homes, with automated features to detect rib location and aid in efficient transmission of energy to organs of interest. This feasibility study aimed to assess efficacy in rib bone detection without conventional imaging, using a single channel US pitch-catch technique integrated into an US therapy device to detect pulsed US reflections from ribs. METHODS In 20 healthy volunteers, the location of the ribs and spleen were identified using a diagnostic US imaging system. Reflected ultrasound signals were recorded at five positions over the spleen and adjacent ribs using the therapy device. Signals were classified as between ribs (intercostal), partially over a rib, or fully over a rib using four models: threshold-based time domain classification, threshold-based frequency domain classification, logistic regression, and support vector machine (SVM). RESULTS SVM performed best overall on the All Participants cohort with accuracy up to 96.25%. All models' accuracies were improved by separating participants into two cohorts based on Body Mass Index (BMI) and re-fitting each model. After separation into Low BMI and High BMI cohorts, a simple time-thresholding approach achieved accuracies up to 100% and 93.75%, respectively. CONCLUSION These results demonstrate that US reflection signal classification can accurately provide low complexity, real-time automated onboard rib detection and user feedback to advance at-home therapeutic US delivery.
Collapse
Affiliation(s)
- Claire R W Kaiser
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA.
| | - Adam B Tuma
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Maryam Zebarjadi
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Daniel P Zachs
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Anna J Organ
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Morgan N Collins
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Groth SP, Gélat P, Haqshenas SR, Saffari N, van 't Wout E, Betcke T, Wells GN. Accelerating frequency-domain numerical methods for weakly nonlinear focused ultrasound using nested meshes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:441. [PMID: 34340504 DOI: 10.1121/10.0005655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The numerical simulation of weakly nonlinear ultrasound is important in treatment planning for focused ultrasound (FUS) therapies. However, the large domain sizes and generation of higher harmonics at the focus make these problems extremely computationally demanding. Numerical methods typically employ a uniform mesh fine enough to resolve the highest harmonic present in the problem, leading to a very large number of degrees of freedom. This paper proposes a more efficient strategy in which each harmonic is approximated on a separate mesh, the size of which is proportional to the wavelength of the harmonic. The increase in resolution required to resolve a smaller wavelength is balanced by a reduction in the domain size. This nested meshing is feasible owing to the increasingly localised nature of higher harmonics near the focus. Numerical experiments are performed for FUS transducers in homogeneous media to determine the size of the meshes required to accurately represent the harmonics. In particular, a fast volume potential approach is proposed and employed to perform convergence experiments as the computation domain size is modified. This approach allows each harmonic to be computed via the evaluation of an integral over the domain. Discretising this integral using the midpoint rule allows the computations to be performed rapidly with the FFT. It is shown that at least an order of magnitude reduction in memory consumption and computation time can be achieved with nested meshing. Finally, it is demonstrated how to generalise this approach to inhomogeneous propagation domains.
Collapse
Affiliation(s)
- Samuel P Groth
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Seyyed R Haqshenas
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Nader Saffari
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Elwin van 't Wout
- Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timo Betcke
- Department of Mathematics, University College London, London WC1H 0AY, United Kingdom
| | - Garth N Wells
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
4
|
Zubair M, Dickinson R. Calculating the Effect of Ribs on the Focus Quality of a Therapeutic Spherical Random Phased Array. SENSORS 2021; 21:s21041211. [PMID: 33572208 PMCID: PMC7915479 DOI: 10.3390/s21041211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/03/2023]
Abstract
The overlaying rib cage is a major hindrance in treating liver tumors with high intensity focused ultrasound (HIFU). The problems caused are overheating of the ribs due to its high ultrasonic absorption capability and degradation of the ultrasound intensity distribution in the target plane. In this work, a correction method based on binarized apodization and geometric ray tracing approach was employed to avoid heating the ribs. A detailed calculation of the intensity distribution in the focus plane was undertaken to quantify and avoid the effect on HIFU beam generated by a 1-MHz 256-element random phased array after the ultrasonic beam passes through the rib cage. Focusing through the ribs was simulated for 18 different idealized ribs-array configurations and 10 anatomically correct ribs-array configurations, to show the effect of width of the ribs, intercostal spacing and the relative position of ribs and array on the quality of focus, and to identify the positions that are more effective for HIFU applications in the presence of ribs. Acoustic simulations showed that for a single focus without beam steering and for the same total acoustic power, the peak intensity at the target varies from a minimum of 211 W/cm2 to a maximum of 293 W/cm2 for a nominal acoustic input power of 15 W, whereas the side lobe level varies from 0.07 Ipeak to 0.28 Ipeak and the separation between the main lobe and side lobes varies from 2.5 mm to 6.3 mm, depending on the relative positioning of the array and ribs and the beam alignment. An increase in the side lobe level was observed by increasing the distance between the array and the ribs. The parameters of focus splitting and the deterioration of focus quality caused by the ultrasonic propagation through the ribs were quantified in various possible different clinical scenarios. In addition to idealized rib topology, anatomical realistic ribs were used to determine the focus quality of the HIFU beam when the beam is steered both in axial and transverse directions and when the transducer is positioned at different depths from the rib cage.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, CA 90007, USA
- Correspondence:
| | - Robert Dickinson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| |
Collapse
|
5
|
Daunizeau L, Nguyen A, Le Garrec M, Chapelon JY, N'Djin WA. Robot-assisted ultrasound navigation platform for 3D HIFU treatment planning: Initial evaluation for conformal interstitial ablation. Comput Biol Med 2020; 124:103941. [PMID: 32818742 DOI: 10.1016/j.compbiomed.2020.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Interstitial Ultrasound-guided High Intensity Focused Ultrasound (USgHIFU) therapy has the potential to deliver ablative treatments which conform to the target tumor. In this study, a robot-assisted US-navigation platform has been developed for 3D US guidance and planning of conformal HIFU ablations. The platform was used to evaluate a conformal therapeutic strategy associated with an interstitial dual-mode USgHIFU catheter prototype (64 elements linear-array, measured central frequency f = 6.5 MHz), developed for the treatment of HepatoCellular Carcinoma (HCC). The platform included a 3D navigation environment communicating in real-time with an open research dual-mode US scanner/HIFU generator and a robotic arm, on which the USgHIFU catheter was mounted. 3D US-navigation was evaluated in vitro for guiding and planning conformal HIFU ablations using a tumor-mimic model in porcine liver. Tumor-mimic volumes were then used as targets for evaluating conformal HIFU treatment planning in simulation. Height tumor-mimics (ovoid- or disc-shaped, sizes: 3-29 cm3) were created and visualized in liver using interstitial 2D US imaging. Robot-assisted spatial manipulation of these images and real-time 3D navigation allowed reconstructions of 3D B-mode US images for accurate tumor-mimic volume estimation (relative error: 4 ± 5%). Sectorial and full-revolution HIFU scanning (angular sectors: 88-360°) could both result in conformal ablations of the tumor volumes, as soon as their radii remained ≤ 24 mm. The presented US navigation-guided HIFU procedure demonstrated advantages for developing conformal interstitial therapies in standard operative rooms. Moreover, the modularity of the developed platform makes it potentially useful for developing other HIFU approaches.
Collapse
Affiliation(s)
- L Daunizeau
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| | - A Nguyen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - M Le Garrec
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - J Y Chapelon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - W A N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| |
Collapse
|
6
|
Cao R, Huang Z, Nabi G, Melzer A. Patient-Specific 3-Dimensional Model for High-Intensity Focused Ultrasound Treatment Through the Rib Cage: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:883-899. [PMID: 31721248 DOI: 10.1002/jum.15170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The purpose of this study was to develop a patient-specific 3-dimensional model for high-intensity focused ultrasound (HIFU) treatment through the rib cage using patient data. METHODS Experimental testing to derive parameters used in defining the amount of energy and alteration needed in treatment protocols for upper abdominal disorders under the rib cage was performed. Reconstructed rib cage models based on patient data, tissue-mimicking material phantoms, and magnetic resonance imaging-guided HIFU using a multielement phased array transducer were used in the experiments. Changes in the focal temperature, acoustic power, and acoustic pressure distribution were investigated with and without the presence of the rib cage model. An ExAblate system (InSightec Ltd, Tirat Carmel, Israel) was used to sonicate phantoms by varying the target phantom or rib cage model location. RESULTS The effect of the rib cage on the acoustic pressure distribution and acoustic power was closely related to the anatomic structures of the ribs. Thermometry revealed that heating at the focus could be controlled by changing either the power or duration of HIFU application to improve the focal temperature change. The focal temperature change was found to be related to the distance between the rib cage model and focus and the shadow area on the transducer elements covered by the rib cage model in the beam path. CONCLUSIONS Experimental results suggest that the rib cage model is a valuable and useful tool that can provide realistic human anatomic structures and properties for evaluating the effects of the rib cage on ultrasound propagation.
Collapse
Affiliation(s)
- Rui Cao
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ghulam Nabi
- School of Medicine, Ninewells Hospital, Dundee, UK
| | - Andreas Melzer
- Institute for Medical Science and Technology, Dundee, UK
| |
Collapse
|
7
|
Almekkawy M, Ebbini ES. The Optimization of Transcostal Phased Array Refocusing Using the Semidefinite Relaxation Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:318-328. [PMID: 31567081 PMCID: PMC8651278 DOI: 10.1109/tuffc.2019.2944434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumors in organs partially obscured by the rib cage represent a challenge for high-intensity focused ultrasound (HIFU) therapy. The ribs distort the HIFU beams in a manner that reduces the focusing gain at the target, which could result in treatment-limiting collateral damage. In fact, skin burns are a common complication during the ablation of hepatic tumors. This problem can be addressed by employing optimal refocusing algorithms that are designed to achieve a specified focusing gain at the target while controlling the exposure to the ribs in the path of the HIFU beam. However, previously proposed optimal refocusing algorithms did not allow for the controlled transmission through the ribs. In this article, we introduce a new approach for refocusing that can more efficiently steer power toward the target while limiting the power deposition on the ribs. The approach utilizes the semidefinite relaxation (SDR) technique to approximate the original (nonconvex) optimization problem. An important advantage of the SDR-based method over previously proposed optimization methods is the control of the side lobes in the focal plane. The method also allows for specifying an acceptable level of exposure to the ribs. Simulation results using a 1-MHz spherical concave phased array focused on an inhomogeneous medium are presented to demonstrate the performance of the SDR refocusing approach. A finite-difference time-domain propagation model was used to model the propagation in the inhomogeneous tissues, including the ribs. Temperature simulations based on the inhomogeneous transient bioheat transfer equation (tBHTE) demonstrate the significance of the improvements in the focusing gain when using the limited power deposition (LPD) method. The results also demonstrate that the LPD method yields well-behaved array excitation vectors, realizable by currently existing drivers.
Collapse
|
8
|
Xu R, O'Reilly MA. A Spine-Specific Phased Array for Transvertebral Ultrasound Therapy: Design and Simulation. IEEE Trans Biomed Eng 2020; 67:256-267. [DOI: 10.1109/tbme.2019.2912146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Haller J, Wilkens V, Shaw A. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:377-396. [PMID: 29195754 DOI: 10.1016/j.ultrasmedbio.2017.08.1946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A method to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) is described that uses a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events. The method was evaluated by studying acoustic cavitation probabilities in agar-based TMMs with and without scatterers and for different sonication modes like continuous wave, single pulses (microseconds to milliseconds) and repeated burst signals. Acoustic cavitation thresholds (defined here as the peak rarefactional in situ pressure at which the acoustic cavitation probability reaches 50%) at a frequency of 1.06 MHz were observed between 1.1 MPa (for 1 s of continuous wave sonication) and 4.6 MPa (for 1 s of a repeated burst signal with 25-cycle burst length and 10-ms burst period) in a 3% (by weight) agar phantom without scatterers. The method and its evaluation are described, and general terminology useful for standardizing the description of insonation conditions and comparing results is provided. In the accompanying second part, the presented method is used to systematically study the acoustic cavitation thresholds in the same material for a range of sonication modes.
Collapse
Affiliation(s)
- Julian Haller
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Volker Wilkens
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany.
| | - Adam Shaw
- National Physical Laboratory, Teddington, Middlesex, United Kingdom
| |
Collapse
|
10
|
Jakovljevic M, Pinton GF, Dahl JJ, Trahey GE. Blocked Elements in 1-D and 2-D Arrays-Part I: Detection and Basic Compensation on Simulated and In Vivo Targets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:910-921. [PMID: 28328504 PMCID: PMC5829368 DOI: 10.1109/tuffc.2017.2683559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During a transcostal ultrasound scan, ribs and other highly attenuating and/or reflective tissue structures can block parts of the array. Blocked elements tend to limit the acoustic window and impede visualization of structures of interest. Here, we demonstrate a method to detect blocked elements and we measure the loss of image quality they introduce in simulation and in vivo. We utilize a fullwave simulation tool and a clinical ultrasound scanner to obtain element signals from fully sampled matrix arrays during simulated and in vivo transcostal liver scans, respectively. The elements that were blocked by a rib showed lower average signal amplitude and lower average nearest-neighbor cross correlation than the elements in the remainder of the 2-D aperture. The growing receive-aperture B-mode images created from the element data indicate that the signals on blocked elements are dominated by noise and that turning them OFF has a potential to improve visibility of liver vasculature. Adding blocked elements to the growing receive apertures for five in vivo transcostal acquisitions resulted in average decrease in vessel contrast and contrast to noise ratio of 19% and 10%, respectively.
Collapse
|
11
|
Wu H, Shen G, Chen Y. Feasibility of an electromagnetic compatibility method for MRgFUS using a wire mesh screen. ULTRASONICS 2016; 72:15-23. [PMID: 27448456 DOI: 10.1016/j.ultras.2016.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated an electromagnetic compatibility method for high-intensity focused ultrasound (HIFU) and magnetic resonance (MR) imaging in an MR-guided focused ultrasound surgery using a conductive wire mesh screen. This screen has a good ultrasound transmission and shielding effectiveness. A hybrid acoustic simulation method was developed to analyze the effects of mesh parameters and the HIFU working frequency on the acoustic field. Experiments were performed to measure both acoustic pressure profile and radiated electromagnetic noise. With the proposed mesh screen, the electromagnetic radiation emission was reduced by 14dB at 128MHz while the acoustic focal intensity was reduced by less than 11% using one screen. This shielding method is easy to implement and requires no additional phase correction method. This method also improves the quality of MR images.
Collapse
Affiliation(s)
- Hao Wu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guofeng Shen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yazhu Chen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Martin E, Ling YT, Treeby BE. Simulating Focused Ultrasound Transducers Using Discrete Sources on Regular Cartesian Grids. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1535-1542. [PMID: 27541793 DOI: 10.1109/tuffc.2016.2600862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurately representing the behavior of acoustic sources is an important part of ultrasound simulation. This is particularly challenging in ultrasound therapy where multielement arrays are often used. Typically, sources are defined as a boundary condition over a 2-D plane within the computational model. However, this approach can become difficult to apply to arrays with multiple elements distributed over a nonplanar surface. In this paper, a grid-based discrete source model for single- and multielement bowl-shaped transducers is developed to model the source geometry explicitly within a regular Cartesian grid. For each element, the source model is defined as a symmetric, simply connected surface with a single grid point thickness. Simulations using the source model with the open-source k-Wave toolbox are validated using the Rayleigh integral, O'Neil solution, and experimental measurements of a focused bowl transducer under both quasi-continuous wave and pulsed excitations. Close agreement is shown between the discrete bowl model and the axial pressure predicted by the O'Neil solution for a uniform curved radiator, even at very low grid resolutions. Excellent agreement is also shown between the discrete bowl model and experimental measurements. To accurately reproduce the near-field pressure measured experimentally, it is necessary to derive the drive signal at each grid point of the bowl model directly using holography. However, good agreement is also obtained in the focal region using uniformly radiating monopole sources distributed over the bowl surface. This allows the response of multielement transducers to be modeled, even where measurement of an input plane is not possible.
Collapse
|
13
|
MRI-Guided HIFU Methods for the Ablation of Liver and Renal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:43-63. [DOI: 10.1007/978-3-319-22536-4_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
van 't Wout E, Gélat P, Betcke T, Arridge S. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2726-37. [PMID: 26627749 DOI: 10.1121/1.4932166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.
Collapse
Affiliation(s)
- Elwin van 't Wout
- Department of Computer Science, University College London, London, United Kingdom
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Timo Betcke
- Department of Mathematics, University College London, London, United Kingdom
| | - Simon Arridge
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
15
|
Chao YT, Hsu CJ, Yu YL, Yen JY, Ho MC, Chen YY, Chang HC, Lian FL. A novel sound-blocking structure based on the muffler principle for rib-sparing transcostal high-intensity focused ultrasound treatment. Int J Hyperthermia 2015; 31:507-27. [DOI: 10.3109/02656736.2015.1028483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yu-Tin Chao
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Che-Jung Hsu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ya-Lin Yu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, and
| | - Yung-Yaw Chen
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hung-Cheng Chang
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Feng-Li Lian
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
16
|
Gélat P, Ter Haar G, Saffari N. An assessment of the DORT method on simple scatterers using boundary element modelling. Phys Med Biol 2015; 60:3715-30. [DOI: 10.1088/0031-9155/60/9/3715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Schwenke M, Strehlow J, Haase S, Jenne J, Tanner C, Langø T, Loeve AJ, Karakitsios I, Xiao X, Levy Y, Sat G, Bezzi M, Braunewell S, Guenther M, Melzer A, Preusser T. An integrated model-based software for FUS in moving abdominal organs. Int J Hyperthermia 2015; 31:240-50. [DOI: 10.3109/02656736.2014.1002817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Ebbini ES, ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 2015; 31:77-89. [PMID: 25614047 DOI: 10.3109/02656736.2014.995238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This paper reviews ultrasound imaging methods for the guidance of therapeutic focused ultrasound (USgFUS), with emphasis on real-time preclinical methods. Guidance is interpreted in the broadest sense to include pretreatment planning, siting of the FUS focus, real-time monitoring of FUS-tissue interactions, and real-time control of exposure and damage assessment. The paper begins with an overview and brief historical background of the early methods used for monitoring FUS-tissue interactions. Current imaging methods are described, and discussed in terms of sensitivity and specificity of the localisation of the FUS effects in both therapeutic and sub-therapeutic modes. Thermal and non-thermal effects are considered. These include cavitation-enhanced heating, tissue water boiling and cavitation. Where appropriate, USgFUS methods are compared with similar methods implemented using other guidance modalities, e.g. magnetic resonance imaging. Conclusions are drawn regarding the clinical potential of the various guidance methods, and the feasibility and current status of real-time implementation.
Collapse
Affiliation(s)
- Emad S Ebbini
- Electrical and Computer Engineering, University of Minnesota Twin Cities , Minneapolis, Minnesota , USA and
| | | |
Collapse
|
19
|
Gélat P, Ter Haar G, Saffari N. A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Phys Med Biol 2014; 59:3139-71. [PMID: 24861888 DOI: 10.1088/0031-9155/59/12/3139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A forward model, which predicts the scattering by human ribs of a multi-element high-intensity focused ultrasound transducer, was used to investigate the efficacy of a range of focusing approaches described in the literature. This forward model is based on the boundary element method and was described by Gélat et al (2011 Phys. Med. Biol. 56 5553-81; 2012 Phys. Med. Biol. 57 8471-97). The model has since been improved and features a complex surface impedance condition at the surface of the ribs. The inverse problem of focusing through the ribs was implemented on six transducer array-rib topologies and five methods of focusing were investigated, including spherical focusing, binarized apodization based on geometric ray tracing, phase conjugation and the decomposition of the time-reversal operator method. The excitation frequency was 1 MHz and the array was of spherical-section type. Both human and idealized rib topologies were considered. The merit of each method of focusing was examined. It was concluded that the constrained optimization approach offers greater potential than the other focusing methods in terms of maximizing the ratio of acoustic pressure magnitudes at the focus to those on the surface of the ribs whilst taking full advantage of the dynamic range of the phased array.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | |
Collapse
|
20
|
Gélat P, ter Haar G, Saffari N. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/457/1/012002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RAM, Diederich CJ, Bakker JF, Van Rhoon GC. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 2013; 29:346-57. [PMID: 23672453 PMCID: PMC3711016 DOI: 10.3109/02656736.2013.790092] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.
Collapse
Affiliation(s)
- Margarethus M Paulides
- Hyperthermia Unit, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yuldashev PV, Shmeleva SM, Ilyin SA, Sapozhnikov OA, Gavrilov LR, Khokhlova VA. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array. Phys Med Biol 2013; 58:2537-59. [PMID: 23528338 DOI: 10.1088/0031-9155/58/8/2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.
Collapse
|
23
|
Gélat P, Ter Haar G, Saffari N. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen. Phys Med Biol 2012. [PMID: 23207408 DOI: 10.1088/0031-9155/57/24/8471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach based on ray tracing and against the decomposition of the time-reversal operator (DORT). In both cases, the constrained optimization provided a superior ratio of focal peak pressure to maximum pressure magnitude on the surface of the ribs.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | | | | |
Collapse
|
24
|
Cotté B, Lafon C, Dehollain C, Chapelon JY. Theoretical study for safe and efficient energy transfer to deeply implanted devices using ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1674-1685. [PMID: 22899115 DOI: 10.1109/tuffc.2012.2373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The goal of this paper is to prove that a safe and efficient energy transfer is possible between an external transducer located on the patient's skin and a device deeply implanted in the abdomen. An ultrasound propagation model based on the Rayleigh-Sommerfeld diffraction integral is coupled with the data from the Visible Human Project to account for the geometry of the organs in the body. The model is able to predict the amount of acoustic power received by the device for different acoustic paths. The acoustic model is validated by comparison with measurements in water and in heterogeneous liquid phantoms. Care is taken to minimize adverse bioeffects-mainly temperature rise and cavitation in tissues. Simulations based on the bio-heat transfer equation are performed to check that thermal effects are indeed small.
Collapse
Affiliation(s)
- Benjamin Cotté
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | | | | | | |
Collapse
|