1
|
Lebbink F, Stock M, Georg D, Knäusl B. The Influence of Motion on the Delivery Accuracy When Comparing Actively Scanned Carbon Ions versus Protons at a Synchrotron-Based Radiotherapy Facility. Cancers (Basel) 2022; 14:cancers14071788. [PMID: 35406558 PMCID: PMC8997550 DOI: 10.3390/cancers14071788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The interplay of breathing and beam motion reduces the efficacy of particle irradiation in moving tumours. The effect of motion on protons and carbon ion treatments was investigated dosimetrically and the results were benchmarked against each other by employing an anthropomorphic thorax phantom that was able to simulate tumour, rib, and lung motion. The critical question was whether target coverage and organ-at-risk sparing could be maintained when the application of simple motion mitigation was addressed. Special focus was put on unique synchrotron characteristics, such as pulsed beam delivery and beam intensity variations. It could be demonstrated that the effect of motion was greater for carbon ions than for protons. These findings demonstrated the need for applying motion mitigation techniques depending on the motion amplitude, particle type, and treatment prescription considering complex time correlations. Abstract Motion amplitudes, in need of mitigation for moving targets irradiated with pulsed carbon ions and protons, were identified to guide the decision on treatment and motion mitigation strategy. Measurements with PinPoint ionisation chambers positioned in an anthropomorphic breathing phantom were acquired to investigate different tumour motion scenarios, including rib and lung movements. The effect of beam delivery dynamics and spot characteristics was considered. The dose in the tumour centre was deteriorated up to 10% for carbon ions but only up to 5% for protons. Dose deviations in the penumbra increased by a factor of two when comparing carbon ions to protons, ranging from 2 to 30% for an increasing motion amplitude that was strongly dependent on the beam intensity. Layer rescanning was able to diminish the dose distortion caused by tumour motion, but an increase in spot size could reduce it even further to 5% within the target and 10% at the penumbra. An increased need for motion mitigation of carbon ions compared to protons was identified to assure target coverage and sparing of adjacent organs at risk in the penumbra region and outside the target. For the clinical implementation of moving target treatments at a synchrotron-based particle facility complex, time dependencies needed to be considered.
Collapse
Affiliation(s)
- Franciska Lebbink
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria; (F.L.); (M.S.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Markus Stock
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria; (F.L.); (M.S.)
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Knäusl
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria; (F.L.); (M.S.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
2
|
Lis M, Newhauser W, Donetti M, Wolf M, Steinsberger T, Paz A, Graeff C. Preliminary tests of dosimetric quality and projected therapeutic outcomes of multi-phase 4D radiotherapy with proton and carbon ion beams. Phys Med Biol 2021; 66. [PMID: 34740202 DOI: 10.1088/1361-6560/ac36e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022]
Abstract
Objective. The purpose of this study was to perform preliminary pre-clinical tests to compare the dosimetric quality of two approaches to treating moving tumors with ion beams: synchronously delivering the beam with the motion of a moving planning target volume (PTV) using the recently developed multi-phase 4D dose delivery (MP4D) approach, and asynchronously delivering the ion beam to a motion-encompassing internal tumor volume (ITV) combined with rescanning.Approach. We created 4D optimized treatment plans with proton and carbon ion beams for two patients who had previously received treatment for non-small cell lung cancer. For each patient, we created several treatment plans, using approaches with and without motion mitigation: MP4D, ITV with rescanning, static deliveries to a stationary PTV, and deliveries to a moving tumor without motion compensation. Two sets of plans were optimized with margins or robust uncertainty scenarios. Each treatment plan was delivered using a recently-developed motion-synchronized dose delivery system (M-DDS); dose distributions in water were compared to measurements using gamma index analysis to confirm the accuracy of the calculations. Reconstructed dose distributions on the patient CT were analyzed to assess the dosimetric quality of the deliveries (conformity, uniformity, tumor coverage, and extent of hotspots).Main results. Gamma index analysis pass rates confirmed the accuracy of dose calculations. Dose coverage was >95% for all static and MP4D treatments. The best conformity and the lowest lung doses were achieved with MP4D deliveries. Robust optimization led to higher lung doses compared to conventional optimization for ITV deliveries, but not for MP4D deliveries.Significance. We compared dosimetric quality for two approaches to treating moving tumors with ion beams. Our findings suggest that the MP4D approach, using an M-DDS, provides conformal motion mitigation, with full target coverage and lower OAR doses.
Collapse
Affiliation(s)
- Michelle Lis
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America.,Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, German
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, United States of America.,Department of Radiation Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, United States of America
| | - Marco Donetti
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Moritz Wolf
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Timo Steinsberger
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Institute of Condensed Matter Physics, Technical University of Darmstadt, Germany
| | - Athena Paz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Christian Graeff
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
3
|
Extension of RBE-weighted 4D particle dose calculation for non-periodic motion. Phys Med 2021; 91:62-72. [PMID: 34715550 DOI: 10.1016/j.ejmp.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Highly conformal scanned Carbon Ion Radiotherapy (CIRT) might permit dose escalation and improved local control in advanced stage thoracic tumors, but is challenged by target motion. Dose calculation algorithms typically assume a periodically repeating, regular motion. To assess the effect of realistic, irregular motion, new algorithms of validated accuracy are needed. METHODS We extended an in-house treatment planning system to calculate RBE-weighted dose distributions in CIRT on non-periodic CT image sequences. Dosimetric accuracy was validated experimentally on a moving, time-resolved ionization chamber array. Log-file based dose reconstructions were compared by gamma analysis and correlation to measurements at every intermediate detector frame during delivery. The impact of irregular motion on treatment quality was simulated on a virtual 4DCT thorax phantom. Periodic motion was compared to motion with varying amplitude and period ± baseline drift. Rescanning as a mitigation strategy was assessed on all scenarios. RESULTS In experimental validation, average gamma pass rates were 99.89+-0.30% for 3%/3 mm and 88.2+-2.2% for 2%/2 mm criteria. Average correlation for integral dose distributions was 0.990±0.002. Median correlation for single 200 ms frames was 0.947±0.006. In the simulations, irregular motion deteriorated V95 target coverage to 81.2%, 76.6% and 79.0% for regular, irregular motion and irregular motion with base-line drift, respectively. Rescanning restored V95 to >98% for both scenarios without baseline drift, but not with additional baseline drift at 83.7%. CONCLUSIONS The validated algorithm permits to study the effects of irregular motion and to develop and adapt appropriate motion mitigation techniques.
Collapse
|
4
|
Kartini DA, Sokol O, Wiedemann J, Tinganelli W, Witt M, Camazzola G, Krämer M, Talabnin C, Kobdaj C, Fuss MC. Validation of a pseudo-3D phantom for radiobiological treatment plan verifications. Phys Med Biol 2020; 65:225039. [PMID: 32937608 DOI: 10.1088/1361-6560/abb92d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Performing realistic and reliable in vitro biological dose verification with good resolution for a complex treatment plan remains a challenge in particle beam therapy. Here, a new 3D bio-phantom consisting of 96-well plates containing cells embedded into Matrigel matrix was investigated as an alternative tool for biological dose verification. Feasibility tests include cell growth in the Matrigel as well as film dosimetric experiments that rule out the appearance of field inhomogeneities due to the presence of the well plate irregular structure. The response of CHO-K1 cells in Matrigel to radiation was studied by obtaining survival curves following x-ray and monoenergetic 12C ion irradiation, which showed increased radioresistance of 3D cell cultures in Matrigel as compared to a monolayer. Finally, as a proof of concept, a 12C treatment plan was optimized using in-house treatment planning system TRiP98 for uniform cell survival in a rectangular volume and employed to irradiate the 3D phantom. Cell survival distribution in the Matrigel-based phantom was analyzed and compared to cell survival in a reference setup using cell monolayers. Results of both methods were in good agreement and followed the TRiP98 calculation. Therefore, we conclude that this 3D bio-phantom can be a suitable, accurate alternative tool for verifying the biological effect calculated by treatment planning systems, which could be applied to test novel treatment planning approaches involving multiple fields, multiple ion modalities, complex geometries, or unconventional optimization strategies.
Collapse
Affiliation(s)
- D A Kartini
- School of Physics, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand. Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand. Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pfeiler T, Bäumer C, Engwall E, Geismar D, Spaan B, Timmermann B. Experimental validation of a 4D dose calculation routine for pencil beam scanning proton therapy. Z Med Phys 2018; 28:121-133. [DOI: 10.1016/j.zemedi.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
6
|
Bert C, Herfarth K. Management of organ motion in scanned ion beam therapy. Radiat Oncol 2017; 12:170. [PMID: 29110693 PMCID: PMC5674859 DOI: 10.1186/s13014-017-0911-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Scanned ion beam therapy has special demands for treatment of intra-fractionally moving tumors such as lesions in lung or liver. Interplay effects between beam and organ motion can in those settings lead to under-dosage of the target volume. Dedicated treatment techniques such as gating or abdominal compression are required. In addition 4D treatment planning should be used to determine strategies for patient specific treatment planning such as an increased beam focus or the use of internal target volumes incorporating range changes.Several work packages of the Clinical Research Units 214 and 214/2 funded by the German Research Council investigated the management of organ motion in scanned ion beam therapy. A focus was laid on 4D treatment planning using TRiP4D and the development of motion mitigation strategies including their quality assurance. This review focuses on the activity in the second funding period covering adaptive treatment planning strategies, 4D treatment plan optimization, and the application of motion management in pre-clinical research on radiation therapy of cardiac arrhythmias.
Collapse
Affiliation(s)
- Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Bert C, Graeff C, Riboldi M, Nill S, Baroni G, Knopf AC. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops. Technol Cancer Res Treat 2014; 13:485-95. [PMID: 24354749 PMCID: PMC4527425 DOI: 10.7785/tcrtexpress.2013.600274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 11/25/2022] Open
Abstract
We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.
Collapse
Affiliation(s)
- Christoph Bert
- University Clinic Erlangen, Radiation Oncology, Universitatsstrasse 27, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Phillips J, Gueorguiev G, Shackleford JA, Grassberger C, Dowdell S, Paganetti H, Sharp GC. Computing proton dose to irregularly moving targets. Phys Med Biol 2014; 59:4261-73. [PMID: 25029239 DOI: 10.1088/0031-9155/59/15/4261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. METHODS The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. RESULTS A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the phantom (2 mm, 2%), and 90.8% (3 mm, 3%)for the patient data. CONCLUSIONS We have demonstrated a method for accurately reproducing proton dose to an irregularly moving target from a single CT image. We believe this algorithm could prove a useful tool to study the dosimetric impact of baseline shifts either before or during treatment.
Collapse
Affiliation(s)
- Justin Phillips
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Richter D, Schwarzkopf A, Trautmann J, Krämer M, Durante M, Jäkel O, Bert C. Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Med Phys 2013; 40:051722. [PMID: 23635270 DOI: 10.1118/1.4800802] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Upgrade and benchmarking of a research 4D treatment planning system (4DTPS) suitable for realistic patient treatment planning and treatment simulations taking into account specific requirements for scanned ion beam therapy, i.e., modeling of dose heterogeneities due to interplay effects and range changes caused by patient motion and dynamic beam delivery. METHODS The 4DTPS integrates data interfaces to 4D computed tomography (4DCT), deformable image registration and clinically used motion monitoring devices. The authors implemented a novel data model for 4D image segmentation using Boolean mask volume datasets and developed an algorithm propagating a manually contoured reference contour dataset to all 4DCT phases. They further included detailed treatment simulation and dose reconstruction functionality, based on the irregular patient motion and the temporal structure of the beam delivery. The treatment simulation functionality was validated against experimental data from irradiation of moving radiographic films in air, 3D moving ionization chambers in a water phantom, and moving cells in a biological phantom with a scanned carbon ion beam. The performance of the program was compared to results obtained with predecessor programs. RESULTS The measured optical density distributions of the radiographic films were reproduced by the simulations to (-2 ± 12)%. Compared to earlier versions of the 4DTPS, the mean agreement improved by 2%, standard deviations were reduced by 7%. The simulated dose to the moving ionization chambers in water showed an agreement with the measured dose of (-1 ± 4)% for the typical beam configuration. The mean deviation of the simulated from the measured biologically effective dose determined via cell survival was (617 ± 538) mGy relative biological effectiveness corresponding to (10 ± 9)%. CONCLUSIONS The authors developed a research 4DTPS suitable for realistic treatment planning on patient data and capable of simulating dose delivery to a moving patient geometry for scanned ion beams. The accuracy and reliability of treatment simulations improved considerably with respect to earlier versions of the 4DTPS.
Collapse
Affiliation(s)
- D Richter
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Abt. Biophysik, Planckstraße 1, 64291 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Schätti A, Zakova M, Meer D, Lomax AJ. Experimental verification of motion mitigation of discrete proton spot scanning by re-scanning. Phys Med Biol 2013; 58:8555-72. [DOI: 10.1088/0031-9155/58/23/8555] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Bert C, Richter D, Durante M, Rietzel E. Scanned carbon beam irradiation of moving films: comparison of measured and calculated response. Radiat Oncol 2012; 7:55. [PMID: 22462523 PMCID: PMC3342219 DOI: 10.1186/1748-717x-7-55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment of moving target volumes with scanned particle beams benefits from treatment planning that includes the time domain (4D). Part of 4D treatment planning is calculation of the expected result. These calculation codes should be verified against suitable measurements. We performed simulations and measurements to validate calculation of the film response in the presence of target motion. METHODS All calculations were performed with GSI's treatment planning system TRiP. Interplay patterns between scanned particle beams and moving film detectors are very sensitive to slight deviations of the assumed motion parameters and therefore ideally suited to validate 4D calculations. In total, 14 film motion parameter combinations with lateral motion amplitudes of 8, 15, and 20 mm and 4 combinations for lateral motion including range changes were used. Experimental and calculated film responses were compared by relative difference, mean deviation in two regions-of-interest, as well as line profiles. RESULTS Irradiations of stationary films resulted in a mean relative difference of -1.52% ± 2.06% of measured and calculated responses. In comparison to this reference result, measurements with translational film motion resulted in a mean difference of -0.92% ± 1.30%. In case of irradiations incorporating range changes with a stack of 5 films as detector the deviations increased to -6.4 ± 2.6% (-10.3 ± 9.0% if film in distal fall-off is included) in comparison to -3.6% ± 2.5% (-13.5% ± 19.9% including the distal film) for the stationary irradiation. Furthermore, the comparison of line profiles of 4D calculations and experimental data showed only slight deviations at the borders of the irradiated area. The comparisons of pure lateral motion were used to determine the number of motion states that are required for 4D calculations depending on the motion amplitude. 6 motion states per 10 mm motion amplitude are sufficient to calculate the film response in the presence of motion. CONCLUSIONS By comparison to experimental data, the 4D extension of GSI's treatment planning system TRiP has been successfully validated for film response calculations in the presence of target motion within the accuracy limitation given by film-based dosimetry.
Collapse
Affiliation(s)
- Christoph Bert
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany.
| | | | | | | |
Collapse
|