1
|
Guyer G, Mueller S, Mackeprang PH, Frei D, Volken W, Aebersold DM, Loessl K, Manser P, Fix MK. Delivery time reduction for mixed photon-electron radiotherapy by using photon MLC collimated electron arcs. Phys Med Biol 2023; 68:215009. [PMID: 37816376 DOI: 10.1088/1361-6560/ad021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Objective. Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.Approach. An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.Main results. The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans.Significance. A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice.
Collapse
Affiliation(s)
- Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Kristina Loessl
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Fix MK, Frei D, Mueller S, Guyer G, Loebner HA, Volken W, Manser P. Auto-commissioning of a Monte Carlo electron beam model with application to photon MLC shaped electron fields. Phys Med Biol 2023; 68. [PMID: 36716491 DOI: 10.1088/1361-6560/acb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Objective.Presently electron beam treatments are delivered using dedicated applicators. An alternative is the usage of the already installed photon multileaf collimator (pMLC) enabling efficient electron treatments. Currently, the commissioning of beam models is a manual and time-consuming process. In this work an auto-commissioning procedure for the Monte Carlo (MC) beam model part representing the beam above the pMLC is developed for TrueBeam systems with electron energies from 6 to 22 MeV.Approach.The analytical part of the electron beam model includes a main source representing the primary beam and a jaw source representing the head scatter contribution each consisting of an electron and a photon component, while MC radiation transport is performed for the pMLC. The auto-commissioning of this analytical part relies on information pre-determined from MC simulations, in-air dose profiles and absolute dose measurements in water for different field sizes and source to surface distances (SSDs). For validation calculated and measured dose distributions in water were compared for different field sizes, SSDs and beam energies for eight TrueBeam systems. Furthermore, a sternum case in an anthropomorphic phantom was considered and calculated and measured dose distributions were compared at different SSDs.Main results.Instead of the manual commissioning taking up to several days of calculation time and several hours of user time, the auto-commissioning is carried out in a few minutes. Measured and calculated dose distributions agree generally within 3% of maximum dose or 2 mm. The gamma passing rates for the sternum case ranged from 96% to 99% (3% (global)/2 mm criteria, 10% threshold).Significance.The auto-commissioning procedure was successfully implemented and applied to eight TrueBeam systems. The newly developed user-friendly auto-commissioning procedure allows an efficient commissioning of an MC electron beam model and eases the usage of advanced electron radiotherapy utilizing the pMLC for beam shaping.
Collapse
Affiliation(s)
- M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - H A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Skinner L, Fahimian BP, Yu AS. Tungsten filled 3D printed field shaping devices for electron beam radiation therapy. PLoS One 2019; 14:e0217757. [PMID: 31216296 PMCID: PMC6584017 DOI: 10.1371/journal.pone.0217757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/19/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose Electron radiotherapy is a labor-intensive treatment option that is complicated by the need for field shaping blocks. These blocks are typically made from casting Cerrobend alloys containing lead and cadmium. This is a highly toxic process with limited precision. This work aims to provide streamlined and more precise electron radiotherapy by 3D using printing techniques. Methods The 3D printed electron cutout consists of plastic shells filled with 2 mm diameter tungsten ball bearings. Five clinical Cerrobend defined field were compared to the planned fields by measuring the light field edge when mounted in the electron applicator on a linear accelerator. The dose transmitted through the 3D printed and Cerrobend cutouts was measured using an IC profiler ion chamber array with 6 MeV and 16 MeV beams. Dose profiles from the treatment planning system were also compared to the measured dose profiles. Centering and full width half maximum (FWHM) metrics were taken directly from the profiler software. Results The transmission of a 16MeV beam through a 12 mm thick layer of tungsten ball bearings agreed within 1% of a 15 mm thick Cerrobend block (measured with an ion chamber array). The radiation fields shaped by ball bearing filled 3D printed cutout were centered within 0.4 mm of the planned outline, whereas the Cerrobend cutout fields had shift errors of 1–3 mm, and shape errors of 0.5–2 mm. The average shift of Cerrobend cutouts was 2.3 mm compared to the planned fields (n = 5). Beam penumbra of the 3D printed cutouts was found to be equivalent to the 15 mm thick Cerrobend cutout. The beam profiles agreed within 1.2% across the whole 30 cm profile widths. Conclusions This study demonstrates that with a proper quality assurance procedure, 3D-printed cutouts can provide more accurate electron radiotherapy with reduced toxicity compared to traditional Cerrobend methods.
Collapse
Affiliation(s)
- Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States of America
| | - Benjamin P. Fahimian
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States of America
| | - Amy S. Yu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Dosimetric evaluation of a novel electron–photon mixed beam, produced by a medical linear accelerator. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396917000711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAimThis study deals with the characteristics of simultaneous photon and electron beams in homogenous and inhomogeneous phantoms by experimental and Monte Carlo dosimetry, for therapeutic purposes. Materials and methods: Both 16 and 20 MeV high-energy electron beams were used as the original beam to strike perforated lead sheets to produce the mixed beam. The dosimetry results were achieved by measurement in an ion chamber in a water phantom and film dosimetry in a Perspex nasal phantom, and then compared with those calculated through a simulation approach. To evaluate two-dimensional dose distribution in the inhomogeneous medium, the dose–area histogram was obtained.ResultsThe highest percentage of photon contribution in mixed beam was found to be 36% for 2-mm thickness of lead layer with holes diameter of 0·2 cm for a 20 MeV primary electron energy. For small fields, the percentage depth dose parameters variations were found to be similar to pure electron beam within ±2%. The most feasible flatness in beam profile was 11% for pure electron and 7% for the mixed beam. Penumbra changes as function of depth was about ten times better than in pure electron field.ConclusionsThe results present some dosimetric advantages that can make this study a platform for the production of simultaneous mixed beams in future linear accelerators (LINACs), which through redesign of the LINAC head, which could lead to setup error reduction and a decrease of intra-fractional tumour cells repair.
Collapse
|