1
|
Tattenberg S, Madden TM, Bortfeld T, Parodi K, Verburg J. Range uncertainty reductions in proton therapy may lead to the feasibility of novel beam arrangements which improve organ-at-risk sparing. Med Phys 2022; 49:4693-4704. [PMID: 35362163 DOI: 10.1002/mp.15644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Tattenberg S, Madden TM, Gorissen BL, Bortfeld T, Parodi K, Verburg J. Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (NTCP) and healthy tissue doses. Med Phys 2021; 48:5356-5366. [PMID: 34260085 DOI: 10.1002/mp.15097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Proton therapy allows for more conformal dose distributions and lower organ at risk and healthy tissue doses than conventional photon-based radiotherapy, but uncertainties in the proton range currently prevent proton therapy from making full use of these advantages. Numerous developments therefore aim to reduce such range uncertainties. In this work, we quantify the benefits of reductions in range uncertainty for treatments of skull base tumors. METHODS The study encompassed 10 skull base patients with clival tumors. For every patient, six treatment plans robust to setup errors of 2 mm and range errors from 0% to 5% were created. The determined metrics included the brainstem and optic chiasm normal tissue complication probability (NTCP) with the endpoints of necrosis and blindness, respectively, as well as the healthy tissue volume receiving at least 70% of the prescription dose. RESULTS A range uncertainty reduction from the current level of 4% to a potentially achievable level of 1% reduced the probability of brainstem necrosis by up to 1.3 percentage points in the nominal scenario in which neither setup nor range errors occur and by up to 2.9 percentage points in the worst-case scenario. Such a range uncertainty reduction also reduced the optic chiasm NTCP with the endpoint of blindness by up to 0.9 percentage points in the nominal scenario and by up to 2.2 percentage points in the worst-case scenario. The decrease in the healthy tissue volume receiving at least 70% of the prescription dose ranged from -7.8 to 24.1 cc in the nominal scenario and from -3.4 to 38.4 cc in the worst-case scenario. CONCLUSION The benefits quantified as part of this study serve as a guideline of the OAR and healthy tissue dose benefits that range monitoring techniques may be able to achieve. Benefits were observed between all levels of range uncertainty. Even smaller range uncertainty reductions may therefore be beneficial.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bram L Gorissen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Unkelbach J, Alber M, Bangert M, Bokrantz R, Chan TCY, Deasy JO, Fredriksson A, Gorissen BL, van Herk M, Liu W, Mahmoudzadeh H, Nohadani O, Siebers JV, Witte M, Xu H. Robust radiotherapy planning. ACTA ACUST UNITED AC 2018; 63:22TR02. [DOI: 10.1088/1361-6560/aae659] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
van Haveren R, Ogryczak W, Verduijn GM, Keijzer M, Heijmen BJM, Breedveld S. Fast and fuzzy multi-objective radiotherapy treatment plan generation for head and neck cancer patients with the lexicographic reference point method (LRPM). Phys Med Biol 2017; 62:4318-4332. [PMID: 28475495 DOI: 10.1088/1361-6560/62/11/4318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we have proposed Erasmus-iCycle, an algorithm for fully automated IMRT plan generation based on prioritised (lexicographic) multi-objective optimisation with the 2-phase ϵ-constraint (2pϵc) method. For each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto optimal plan. The 2pϵc method uses a list of objective functions that are consecutively optimised, following a strict, user-defined prioritisation. The novel lexicographic reference point method (LRPM) is capable of solving multi-objective problems in a single optimisation, using a fuzzy prioritisation of the objectives. Trade-offs are made globally, aiming for large favourable gains for lower prioritised objectives at the cost of only slight degradations for higher prioritised objectives, or vice versa. In this study, the LRPM is validated for 15 head and neck cancer patients receiving bilateral neck irradiation. The generated plans using the LRPM are compared with the plans resulting from the 2pϵc method. Both methods were capable of automatically generating clinically relevant treatment plans for all patients. For some patients, the LRPM allowed large favourable gains in some treatment plan objectives at the cost of only small degradations for the others. Moreover, because of the applied single optimisation instead of multiple optimisations, the LRPM reduced the average computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 2pϵc method.
Collapse
Affiliation(s)
- Rens van Haveren
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Hauler F, Furtado H, Jurisic M, Polanec SH, Spick C, Laprie A, Nestle U, Sabatini U, Birkfellner W. Automatic quantification of multi-modal rigid registration accuracy using feature detectors. Phys Med Biol 2016; 61:5198-214. [DOI: 10.1088/0031-9155/61/14/5198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
van de Water S, van Dam I, Schaart DR, Al-Mamgani A, Heijmen BJM, Hoogeman MS. The price of robustness; impact of worst-case optimization on organ-at-risk dose and complication probability in intensity-modulated proton therapy for oropharyngeal cancer patients. Radiother Oncol 2016; 120:56-62. [PMID: 27178142 DOI: 10.1016/j.radonc.2016.04.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/24/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE To quantify the impact of the degree of robustness against setup errors and range errors on organ-at-risk (OAR) dose and normal tissue complication probabilities (NTCPs) in intensity-modulated proton therapy for oropharyngeal cancer patients. MATERIAL AND METHODS For 20 oropharyngeal cases (10 unilateral and 10 bilateral), robust treatment plans were generated using 'minimax' worst-case optimization. We varied the robustness against setup errors ('setup robustness') from 1 to 7mm and the robustness against range errors ('range robustness') from 1% to 7% (+1mm). We evaluated OAR doses and NTCP-values for xerostomia, dysphagia and larynx edema. RESULTS Varying the degree of setup robustness was found to have a considerably larger impact than varying the range robustness. Increasing setup robustness from 1mm to 3, 5, and 7mm resulted in average NTCP-values to increase by 1.9, 4.4 and 7.5 percentage point, whereas they increased by only 0.4, 0.8 and 1.2 percentage point when increasing range robustness from 1% to 3%, 5% and 7%. The degree of setup robustness was observed to have a clinically significant impact in bilateral cases in particular. CONCLUSIONS For oropharyngeal cancer patients, minimizing setup errors should be given a higher priority than minimizing range errors.
Collapse
Affiliation(s)
- Steven van de Water
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, The Netherlands.
| | - Iris van Dam
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, The Netherlands; Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, The Netherlands
| | - Dennis R Schaart
- Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, The Netherlands
| | - Abrahim Al-Mamgani
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, The Netherlands
| | - Ben J M Heijmen
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Wang D, Dirksen B, Hyer DE, Buatti JM, Sheybani A, Dinges E, Felderman N, TenNapel M, Bayouth JE, Flynn RT. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions. Med Phys 2015; 41:121705. [PMID: 25471952 DOI: 10.1118/1.4901260] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. METHODS Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). RESULTS For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100-4.49/100) to 6.05/100 (range 1.38/100-11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100-11.5/100) for Cone and 5.22/100 (range 1.37/100-8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). CONCLUSIONS For treating peripheral brain lesions--where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy--the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Blake Dirksen
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Arshin Sheybani
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Eric Dinges
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Nicole Felderman
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Mindi TenNapel
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - John E Bayouth
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
8
|
Abstract
Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of accuracy and pioneered volumetric treatment planning and imaging at a level of quality now standard in X-ray therapy. IMPT requires not only the highest precision tools but also the highest level of system integration of the services required to deliver high-precision radiotherapy.
Collapse
Affiliation(s)
- H M Kooy
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Bert C, Durante M. Particle radiosurgery: a new frontier of physics in medicine. Phys Med 2014; 30:535-8. [PMID: 24889154 DOI: 10.1016/j.ejmp.2014.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Radiosurgery was introduced over half a century ago for treatment of intracranial lesions. In more recent years, stereotactic radiotherapy has rapidly advanced and is now commonly used for treatments of both cranial and extracranial lesions with high doses delivered in a few, down to a single fraction. The results of a workshop on Particle radiosurgery: A new frontier of physics in medicine held at Obergurgl, Austria during August 25-29 2013 are summarized in this issue with an overview presented in this paper. The focus was laid on particle radiosurgery but the content also includes current practice in x-ray radiosurgery and the overarching research in radiobiology and motion management for extracranial lesions. The results and discussions showed that especially research in radiobiology of high-dose charged-particles and motion management are necessary for the success of particle radiosurgery.
Collapse
Affiliation(s)
- Christoph Bert
- Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Germany; GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany.
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany; Technical University Darmstadt, Germany
| |
Collapse
|